
Agent Control Plane Reference Archi-
tecture (ACP-RA)
Governed, scalable agentic autonomy for contested and degraded operations

Adam Boas

Agentic Warfare Architect, Department of War

February 2026

Distribution: Public. Disclaimer: Views are the author’s and do not represent official policy.

Contents
1 Agent Control Plane Reference Architecture (ACP-RA) 4

1.1 Scope and non-goals . 4
1.2 Strategic drivers . 5
1.3 Architectural principles . 6
1.4 Reference architecture structure . 7
1.5 Conceptual view (OV-1) . 7

2 Core vocabulary 8
2.1 Agent . 8
2.2 Persona . 8
2.3 Trust Scope Manifest (TSM) . 8
2.4 Work unit . 9
2.5 Policy bundle . 9
2.6 Context bundle . 9
2.7 Action envelope . 9
2.8 Inter-agent message envelope . 10
2.9 Ensemble (swarm) . 10

3 Consequence tiers and required controls 10
4 Threat model and trust boundaries 10

4.1 Operating assumptions (adversary model) . 11
4.2 Trust boundaries: authority sources vs data sources . 11
4.3 Control invariants (MUST) . 12
4.4 Common attack paths ACP-RA is designed to stop . 12

5 Technical positions (required control surfaces) 12
5.1 TP1 — Agent identity as NPE (ICAM-aligned) . 12
5.2 TP2 — Trust scopes are signed, versioned, and enforceable 12
5.3 TP3 — Work units are first-class governance objects . 12
5.4 TP4 — Tool/Action Gateway mediates all “doing” . 13
5.5 TP5 — Tools/skills are onboarded through supply-chain controls 13
5.6 TP6 — Inter-Agent Gateway governs agent-to-agent communication 13
5.7 TP7 — Context/Data Gateway governs context engineering 13
5.8 TP8 — Model Gateway governs model routing and upgrades 13
5.9 TP9 — Evaluation harness gates promotion; monitoring gates runtime 13
5.10 TP10 — Evidence ledger is tamper-evident and queryable . 13
5.11 TP11 — Degraded-mode behaviors are declared and enforced 13

6 Architecture components 14
6.1 Agent registry and persona issuance . 14
6.2 Trust scope service . 14
6.3 Work Unit Service (WUS) . 14
6.4 Supervision console (Human Direction and Oversight Surface) 14
6.5 Policy engine (PDP) and distributed enforcement (PEPs) . 14
6.6 Model gateway . 15
6.7 Context/Data gateway . 15
6.8 Tool/Action gateway . 15
6.9 Inter-Agent Gateway (IAG) . 18
6.10 Evaluation harness (functional + adversarial) and tool eval packs 20
6.11 Evidence ledger and replay service . 21
6.12 Observability and SOC/CSSP integration . 22
6.13 Containment and revocation . 22
6.14 Resource governance (budget engine) . 22
6.15 Federation and cross-domain transfer . 23

2

7 Control loops (how the system behaves) 23
7.1 Action loop: intent → policy → mediated action → evidence 23
7.2 Governance loop: artifacts → tests and evals → promotion → enforcement 24

8 Multi-agent governance (ensembles and swarms) 26
8.1 Coordination patterns (policy-selectable) . 26
8.2 Trust scope composition and delegation . 26
8.3 Shared state governance . 26
8.4 Arbitration and deadlock prevention . 26
8.5 Swarm budgets and dynamic allocation . 26
8.6 Swarm containment without collapse . 27

9 Adversarial robustness and contested/degraded operation 27
9.1 Threat classes . 27
9.2 Defenses engineered into ACP . 27
9.3 Degraded modes (policy-driven safe behavior) . 28

10 Human oversight, escalation, and Responsible AI alignment 28
10.1 Escalation taxonomy (what triggers humans) . 28
10.2 Override surfaces are governed . 28
10.3 Hybrid teaming patterns . 28
10.4 Responsible AI alignment (operationalized as controls) . 29

11 Composability, federation, and cross-enclave interoperability 29
11.1 Federation patterns . 29
11.2 Cross-domain context transfer . 29
11.3 Portability across clouds, on-prem, and edge . 29

12 Lifecycle of the ACP itself 30
12.1 Safe upgrades and migrations . 30
12.2 Load, chaos, and attack simulation . 30

13 Patterns (reusable implementation guidance) 30
13.1 Pattern: “Work units as the unit of supervision” . 30
13.2 Pattern: “Policy-centered mesh” . 30
13.3 Pattern: “Bulkhead gateways” . 30
13.4 Pattern: “Budgeted autonomy” . 31
13.5 Pattern: “Tool supply chain governance” . 31
13.6 Pattern: “Evidence-first releases” . 31
13.7 Pattern: “Ensemble contract” . 31

14 Metrics, success criteria, and a transition roadmap 31
14.1 Success metrics . 31
14.2 Maturity levels (ACP-conformance) . 31
14.3 Transition roadmap (copilots → governed agents → supervised autonomy → governed swarms) 32

15 Recommendations 32
16 Conclusion 32
17 Appendix: Minimal artifact set (GitOps-ready) 32
18 Appendix: Example ensemble contract (illustrative) 33
19 Appendix: Example work unit template (illustrative) 34
20 Appendix: References (authoritative and industry sources) 35

20.1 DoW / DoW CIO . 35
20.2 Industry protocols and agent platform patterns . 36
20.3 Tool/skill ecosystem risk signals (supply chain lessons) . 36
20.4 Prior papers (conceptual anchors) . 36

ACP-RA White Paper 3 v0.1 | February 2026

Executive Summary
Agentic autonomy is shifting the unit of output from human-hours to agent-hours. That is the
transition from “force multiplication” to “force creation”: intent-driven systems executing within
delegated authority, scaling through silicon rather than staffing. In practical terms, decision tempo
and execution density can exceed human relevance windows—especially in contested environments
where connectivity is intermittent and deception is routine.
The Agent Control Plane (ACP) exists to make this transition fieldable.
It is the mechanism that lets the Department move faster without turning speed into unmanaged
risk. It does this by standardizing and enforcing:

• Identity for agents as non-person entities (NPEs)
• Delegated authority as explicit trust scopes
• Work units as the supervised unit of long-running, parallel agent execution
• Mediated action through tool and inter-agent gateways
• Governance as code with continuous evaluation and promotion gates
• Evidence and replay sufficient for continuous authorization and after-action reconstruction
• Swarm/ensemble governance so multi-agent coordination remains bounded, attributable,

and containable
• Degraded-mode survivability so autonomy degrades safely when networks, models, or services

are denied

This document is written as a DoW CIO–style reference architecture: strategic purpose, principles,
technical positions, patterns, and vocabulary. It is intended to guide and constrain downstream
solution architectures rather than prescribe a single implementation.

1 Agent Control Plane Reference Architecture (ACP-RA)
This section defines ACP-RA at a glance: what it covers, why it exists, and the baseline principles
it enforces. The goal is to establish a shared frame before diving into specific control surfaces and
patterns.

1.1 Scope and non-goals
Before debating design details, the problem needed to be bounded. ACP-RA focuses on the control-
plane mechanisms that make agent execution governable at scale. It does not attempt to prescribe
mission tactics, weapon employment, or policy beyond the control plane.

1.1.1 In scope

• Enterprise, intelligence, and operational-support agents that plan, coordinate, and invoke
tools/actions within bounded authority.

• Multi-agent ensembles (swarms) and their coordination, messaging, shared state, budgets,
observability, and containment.

ACP-RA White Paper 4 v0.1 | February 2026

• Work-unit management for long-running and parallel agent execution (checkpointing, dependen-
cies, cancellation, supervision).

• Policy-as-code, evaluation-as-gate, and evidence generation for continuous authorization.
• Cross-enclave federation and cross-domain handoffs (identity, context, and evidence).

1.1.2 Out of scope

• Tactical employment guidance for autonomous weapons.
• Authorization of use-of-force decisions.
• Any design that bypasses applicable weapon system autonomy policy (see DoDD 3000.09).

Where agents integrate into systems adjacent to use-of-force or mission-critical safety, additional
governance, testing, and policy applies. DoDD 3000.09 remains the governing policy for autonomy
in weapon systems.
(References: DoDD 3000.09; see Appendix “References.”)

1.2 Strategic drivers
The drivers below describe why the Department needs an ACP now. They are constraints that
shape requirements: speed without loss of governance, supervision at scale, resilience under denial,
and interoperability across federated enclaves.

1.2.1 A posture of acceleration

Recent Department strategy and senior-leadership messaging emphasize acceleration in AI adoption,
experimentation, compute access, and rapid iteration. This architecture treats that posture as a
constraint: platforms must support rapid onboarding and change while staying governable and
reversible.

1.2.2 The core problem is shifting from “can agents do X?” to “can people supervise
agents at scale?”

Commercial agent systems are converging on a command-center model: many tasks in parallel,
long-running execution, and human supervision as a portfolio function rather than a per-action
bottleneck. For the Department, this shift is not cosmetic—it drives requirements for work-unit
identity, evidence indexing, pause/resume semantics, and escalation controls that remain enforceable
at machine tempo.

1.2.3 Contested and degraded environments are the baseline, not the exception

Agentic systems fail differently than traditional software. They are vulnerable to deception, poisoning,
and cascade failures—especially when they coordinate as ensembles. The control plane must survive
partial connectivity, intermittent access to centralized services, and adversary attempts to subvert
policy and evidence mechanisms themselves.

ACP-RA White Paper 5 v0.1 | February 2026

1.2.4 Interoperability and federation are unavoidable

DoW reality is federated: Services, agencies, mission partners, and multiple classification enclaves.
Interoperability is also plural: agent-to-agent messaging and agent-to-tool/data connectors are both
being standardized in industry. The ACP must be protocol-neutral while enforcing a consistent
policy surface across whichever interop protocols are in use.

1.3 Architectural principles

1.3.1 P1 — Agents are non-person entities (NPEs), not “apps”

Agents must have identity, credentials, lifecycle controls, and attributes consistent with enterprise
identity patterns. Treat them as first-class actors with accountability.

1.3.2 P2 — Centralize policy decisions; distribute enforcement

The ACP uses a policy decision point (PDP) with multiple policy enforcement points (PEPs): at
runtime admission, model routing, context retrieval, tool invocation, inter-agent messaging, and
work-unit state transitions.

1.3.3 P3 — Default deny; allow by explicit trust scope

Agents do not gain authority because a prompt implies it. Authority is granted by a signed, versioned
trust scope manifest and enforced by gateways.

1.3.4 P4 — The “doing boundary” is explicit

Tool calls and other side effects are mediated. Every action is a policy event. “It can think” is not
the same as “it can do.”

1.3.5 P5 — Evidence is first-class

Evidence is produced at the same tempo as actions. Continuous authorization and credible after-
action review require deterministic, replayable artifacts.

1.3.6 P6 — Rollback and containment are capabilities

Speed wins only if rollback is instant and scoped. Containment must isolate a single agent without
collapsing an ensemble.

1.3.7 P7 — Context engineering is governed data movement

Context is not a prompt trick; it is a data plane. Provenance, minimization, freshness, and labeling
are mandatory.

ACP-RA White Paper 6 v0.1 | February 2026

1.3.8 P8 — Evals and monitoring are gates

Continuous evaluation, red-teaming, drift detection, and anomaly response are not documentation—
they are release and runtime gates.

1.3.9 P9 — Budgets are policy, not accounting

Compute, bandwidth, tool calls, and power are operational constraints. Autonomy must operate
within explicit budgets—especially in contested logistics.

1.3.10 P10 — Tools/skills are a supply chain

Agent capability expansion via tools, connectors, and “skills” is unavoidable. Tool ecosystems
become attack surfaces. Therefore: tools are onboarded, signed, scanned, evaluated, and attested
like software packages; execution is sandboxed and governed by trust scope.

1.4 Reference architecture structure
DoW CIO reference architectures guide and constrain downstream architectures by providing:
strategic purpose, principles, technical positions, patterns, and vocabulary. ACP-RA
uses that same structure.

• Strategic purpose: why ACP exists.
• Principles: non-negotiable engineering behavior.
• Technical positions: required control surfaces and boundary points.
• Patterns: reusable implementation guidance.
• Vocabulary: consistent terms that prevent “same word, different meaning” failures.

1.5 Conceptual view (OV-1)
The conceptual model is a control system with two planes:

• Runtime plane: agent runtimes executing plans and invoking tools (K8s, edge nodes, mission
systems).

• Control plane: identity, trust scopes, work units, policy, gateways, evaluation, evidence,
observability, and containment.

The ACP does not “run the mission.” It constrains, mediates, and proves mission execution.

ACP-RA White Paper 7 v0.1 | February 2026

Figure 1: Agent Control Plane OV-1 (Simplified). The control plane governs identity, trust scopes,
policy, gateways, evaluation, and evidence across the runtime plane. It aligns to enterprise identity
and access management, DevSecOps, Zero Trust/CNAP, and security operations patterns.

2 Core vocabulary
This section defines primitives that remain stable even as frameworks change.

2.1 Agent
A software actor that can plan, retrieve context, communicate, invoke tools, and execute actions
toward a goal within bounded authority.

2.2 Persona
A controlled mission role for an agent (e.g., enterprise drafting, logistics planner, intel triage, policy
checker). Persona is an attribute used by policy.

2.3 Trust Scope Manifest (TSM)
A signed, versioned contract defining an agent’s delegated authority and constraints:

• allowed/prohibited actions and tools.
• consequence tier.
• operating environment (enclave/classification/connectivity).
• uncertainty thresholds and escalation triggers.
• budgets (compute/tokens/tool calls/egress/power/time).
• evidence requirements (fields, redactions, retention).
• degraded-mode behaviors and containment semantics.

ACP-RA White Paper 8 v0.1 | February 2026

2.4 Work unit
A durable, supervised task thread for long-running and parallel agent execution.
A work unit binds:

• a scope context (trust scope hash + policy bundle hash).
• budgets (initial allocation + delegated allowances).
• dependencies (work-unit DAG and blocking conditions).
• checkpoint policy (what is persisted, when, and how to resume).
• sandbox provenance (execution environment identifiers / attestations where available).
• evidence root (the stable anchor used to query all actions/messages/artifacts for this work

unit).

Work units are how the Department supervises autonomy at scale: humans do not “watch every
tool call,” they supervise work units, review diffs, and intervene on escalation triggers.

2.5 Policy bundle
A signed, versioned set of policy rules consumed by enforcement points:

• ABAC rules.
• escalation rules.
• budget policies.
• inter-agent messaging policies.
• safety interlocks (quarantine/kill/rollback).
• work-unit transition constraints (pause/resume/cancel).

2.6 Context bundle
A replayable artifact representing retrieved/used context:

• source pointers, timestamps, labels/tags.
• provenance and integrity metadata.
• minimization decisions.
• freshness/rot signals.
• a stable hash identifier (so later evidence can reference it).

2.7 Action envelope
A signed record of an attempted tool/action:

• work_unit_id.
• request intent + parameters.
• policy decision + policy hash.
• approvals and override records (if any).
• execution environment and attestation identifiers.
• outcome metadata.

ACP-RA White Paper 9 v0.1 | February 2026

• evidence pointers for replay.

2.8 Inter-agent message envelope
A signed record of a message between agents (or ensembles):

• work_unit_id (and optionally ensemble_id).
• sender/receiver identities and personas.
• message type (typed schema).
• TTL, rate-limit class, and fan-out metadata.
• provenance hashes (policy, tool outputs, referenced context bundles).
• minimal “why” field for auditability.

2.9 Ensemble (swarm)
A first-class multi-agent object with explicit governance:

• membership and roles.
• coordination pattern and arbitration rules.
• shared-state rules and boundaries.
• ensemble budgets and allocation policy.
• inter-agent communication policy.
• containment semantics (isolate member vs freeze ensemble).

3 Consequence tiers and required controls
Trust scopes and ensembles reference consequence tiers explicitly. Consequence is the most effective
way to translate mission impact into enforceable controls.
Representative consequence tiers (summary):

• T0 (low): drafting and read-only analysis.
• T1 (moderate): PR creation and recommendations without direct apply.
• T2 (high): production changes, permission changes, external communications.
• T3 (mission-critical): life, safety, or mission-critical actions.

Composition rule: when scopes combine (agent→agent, agent→ensemble, cross-enclave), authority
composes by intersection, not union. The effective authority is the overlap of allowed actions,
data, and environments—never the sum.

4 Threat model and trust boundaries
ACP-RA assumes sophisticated adversaries and treats external inputs as untrusted until proven
otherwise. The goal is not to make models “immune” to manipulation. The goal is to make

ACP-RA White Paper 10 v0.1 | February 2026

manipulation non-catastrophic by enforcing explicit authority, mediated execution, and replayable
evidence.

4.1 Operating assumptions (adversary model)
ACP-RA is designed for environments where an adversary can:

• inject instructions into untrusted text (web pages, documents, email, tickets, chat logs).
• poison retrieval (index contamination, search result manipulation, stale or malicious KB entries).
• exploit tool interfaces (parameter injection, unexpected tool behaviors, malicious or compromised

plugins/connectors).
• exploit agent-to-agent communication (unauthenticated peers, weak schemas, fan-out cascades,

replay).
• degrade the environment (denial of network/model services, delay/reorder delivery, partial

partitions).
• target the control plane itself (policy bundle distribution, evidence storage, revocation channels,

registries).

4.2 Trust boundaries: authority sources vs data sources
ACP-RA distinguishes authority (what may authorize an action) from data (what may inform a
decision). This is the core trust boundary.

4.2.1 Authority sources (may authorize actions)

The following sources are allowed to confer authority:

1. Human intent (operator/commander direction) captured as an authenticated session input.
2. A signed Trust Scope Manifest (TSM) referenced by immutable hash.
3. A signed policy bundle referenced by immutable hash.
4. Explicit approvals/waivers (human-on-the-loop) recorded as evidence.

Everything else is data.

4.2.2 Data sources (untrusted by default)

The following sources are treated as untrusted inputs and must not be allowed to directly trigger
tool execution:

• Retrieved web content, documents, PDFs, slides, wiki pages.
• Emails, tickets, chat transcripts, and attachments.
• Tool outputs (including logs, error messages, and API responses).
• Inter-agent messages until authenticated, authorized, and schema-validated.
• Model outputs (plans, explanations, code) until mediated through gateways.

ACP-RA White Paper 11 v0.1 | February 2026

4.3 Control invariants (MUST)
ACP-RA enforces the following invariants. If any invariant is violated, the system is not a control
plane.

• No implicit authority: prompts and retrieved text do not grant permissions.
• No direct side effects: model runtimes do not execute privileged operations directly.
• Mediated execution: every side effect passes through the Tool/Action Gateway.
• Structured requests: side effects are expressed as typed action envelopes (schema-validated).
• Reproducible policy decisions: allow/deny decisions record inputs + policy hash + decision

outputs.
• Replayable context: context used for decisions is captured as context bundles with provenance

and integrity metadata.
• Authenticated messaging: inter-agent communication is typed, authenticated, authorized, and

rate-limited at the IAG.
• Anti-replay: inter-agent message envelopes include TTL + sequence + nonce; receivers enforce

anti-replay windows.

4.4 Common attack paths ACP-RA is designed to stop
• Prompt injection: untrusted text attempts to override intent or induce a tool call.
• Retrieval poisoning: the agent retrieves malicious instructions or falsified facts.
• Parameter injection: attacker causes a legitimate tool call with malicious arguments.
• Output injection: a tool returns content crafted to steer the model into unsafe actions.
• Protocol exploits: inter-agent messaging becomes a covert command channel (schema gaps,

replay, fan-out cascades).

5 Technical positions (required control surfaces)
ACP-RA constrains solution architectures through required control surfaces and boundary points.

5.1 TP1 — Agent identity as NPE (ICAM-aligned)
Every agent and tool-runtime has an identity, attributes, and lifecycle controls. Sponsorship and
ownership are attributable.

5.2 TP2 — Trust scopes are signed, versioned, and enforceable
Trust scopes are artifacts. Enforcement points validate and cache them. Scope changes require
promotion gates.

5.3 TP3 — Work units are first-class governance objects
Every long-running agent effort is a work unit with:

• bounded scope and budgets.

ACP-RA White Paper 12 v0.1 | February 2026

• explicit dependencies and cancellation semantics.
• checkpoint and resume behavior.
• evidence anchoring for replay.

5.4 TP4 — Tool/Action Gateway mediates all “doing”
No direct access from model runtime to privileged tools. Tool calls are policy checked, budgeted,
sandboxed, and logged.

5.5 TP5 — Tools/skills are onboarded through supply-chain controls
Tools, connectors, and skills are:

• registered.
• signed.
• scanned (static + dependency + behavior checks).
• evaluated with tool-specific eval packs.
• attested at runtime (hashes, signatures, scanner verdicts).

5.6 TP6 — Inter-Agent Gateway governs agent-to-agent communication
Agent-to-agent messaging is authenticated, authorized, schema-validated, rate-limited, and at-
tributable. It has circuit breakers to prevent cascades.

5.7 TP7 — Context/Data Gateway governs context engineering
Context retrieval is policy checked, tag-aware, provenance-preserving, and freshness-aware. Context
becomes a replayable bundle.

5.8 TP8 — Model Gateway governs model routing and upgrades
Model usage is controlled by allowlists, routing policies, canary/rollback, and evidence capture. The
ACP never assumes a single model or vendor.

5.9 TP9 — Evaluation harness gates promotion; monitoring gates runtime
Evals are blocking checks (functional + policy conformance + adversarial tests). Runtime monitors
detect drift and trigger containment.

5.10 TP10 — Evidence ledger is tamper-evident and queryable
Actions, context bundles, policy decisions, approvals, inter-agent envelopes, and containment events
generate structured evidence sufficient for replay and continuous authorization.

5.11 TP11 — Degraded-mode behaviors are declared and enforced
When connectivity, model access, or centralized policy is denied, the system transitions to a defined
degraded mode with tightened authority.

ACP-RA White Paper 13 v0.1 | February 2026

6 Architecture components
The ACP is best understood as a set of “bulkheads” and “gates.” Bulkheads contain failures. Gates
enforce policy.

6.1 Agent registry and persona issuance
This component issues and manages agent identities and personas:

• NPE identifiers and credentials.
• ownership/sponsorship binding.
• attribute issuance for ABAC (mission, enclave, tier, approved tools).
• lifecycle: onboarding, rotation, revocation.

6.2 Trust scope service
The trust scope service stores and signs manifests, enforces schema, and supports delegation:

• scope templates by tier and mission thread.
• scope inheritance and delegation (budgets, tool subsets).
• scope translation and intersection rules for federation.

6.3 Work Unit Service (WUS)
This service creates and tracks work units as supervised objects:

• issues work_unit_id and binds it to trust scope + policy bundle hashes.
• tracks work-unit state (queued/running/paused/blocked/canceled/completed).
• tracks dependencies (work-unit DAG) and deadlock timeouts.
• manages checkpointing and resume policies (including degraded modes).
• allocates and reclaims budgets (and delegated allowances) for sub-agents.
• provides a stable evidence anchor for querying actions/messages/artifacts at scale.

6.4 Supervision console (Human Direction and Oversight Surface)
This is not “a UI.” It is an operational control surface that enables humans to supervise autonomy
at scale without becoming the throughput bottleneck.
Minimum capabilities:

• work-unit dashboard (status, dependencies, budget burn-down, anomaly flags).
• review surfaces for outputs (diff review for code/config; artifact review for plans).
• approval queue (human-on-the-loop and quorum workflows).
• intervention controls (pause/resume/cancel; quarantine/kill; tighten scope).
• evidence drill-down by work_unit_id (macro→meso→micro replay tiers).
• after-action review workflow that generates new eval cases and policy refinements.

6.5 Policy engine (PDP) and distributed enforcement (PEPs)
The policy engine evaluates requests using:

ACP-RA White Paper 14 v0.1 | February 2026

• agent identity attributes + persona.
• trust scope claims.
• work-unit state and constraints.
• environment signals (enclave, connectivity mode, posture).
• resource tags (data labels, tool categories).
• current budgets and risk posture.

PEPs exist at:

• runtime admission control.
• tool/action gateway.
• context/data gateway.
• inter-agent gateway.
• model gateway.
• work-unit transitions (pause/resume/cancel).
• CI/CD promotion gates.

6.6 Model gateway
The model gateway enforces:

• model allowlists by enclave and trust scope.
• routing by consequence tier and degraded mode.
• budget limits (tokens/compute/time).
• metadata capture for replay and auditing.

The model gateway is also the upgrade discipline:

• shadow → canary → promote → rollback.
• policy-hash and eval-pack gating.

6.7 Context/Data gateway
This gateway turns “context engineering” into a governed plane:

• tag-aware access controls.
• provenance capture (source/time/label/custody pointer).
• minimization and redaction.
• freshness SLAs and “context rot” warnings.
• production of stable context bundles referenced by action envelopes.

6.8 Tool/Action gateway
This is the most important boundary: it mediates side effects.

• allowlists/denylists by scope and tier
• approvals and quorum requirements for high consequence
• secrets brokerage (tools get secrets; models do not)

ACP-RA White Paper 15 v0.1 | February 2026

• sandboxed execution environments
• idempotency keys and retry control to prevent amplification
• action envelopes emitted to the evidence ledger
• tool provenance and attestation stamped into every action envelope

6.8.1 Action envelope (minimum schema)

The Tool/Action Gateway MUST emit an action envelope for every attempted side effect.

• Pre-execution envelope (request): what the agent asked to do, under which scope/policy, with
which context, and what the PDP decided.

• Post-execution envelope (result): what actually happened, what artifacts were produced, and
what evidence pointers are available for replay.

1 envelopeVersion: 1
2 envelopeId: "ae-<uuid>"
3 createdAt: "2026-02-10T15:04:05Z"
4 workUnitId: "wu-opsplan-2026-02-10-0007"
5
6 actor:
7 agentId: "npe:agent/logistics-55bd"
8 persona: "planning"
9 runtimeAttestationRef: "attest://runtime/sha256:..." # optional

10
11 scope:
12 trustScopeRef: "trustscope://ops-planning/T2@sha256:..."
13 policyBundleRef: "policy://bundle/2026-02@sha256:..."
14
15 request:
16 toolId: "tool:github.pull_request.create"
17 toolVersion: "1.3.2"
18 provenanceTier: "B"
19 actionType: "write" # read|write|irreversible
20 argsSchema: "github.pr.create.v1"
21 args:
22 repo: "anboas/Whitepaper"
23 base: "main"
24 head: "feature/acp"
25 idempotencyKey: "idemp:sha256:..."
26
27 context:
28 bundles:
29 - bundleId: "cb-<uuid>"
30 sha256: "sha256:..."
31 labels: ["untrusted:web", "source:kb"]
32
33 policyDecision:
34 decision: "allow" # allow|deny
35 policyHash: "sha256:..."
36 reasonCode: "ALLOWLIST_MATCH"

ACP-RA White Paper 16 v0.1 | February 2026

37 approvalsRequired: []
38 budgets:
39 toolCalls: 1
40 tokensMax: 8000
41
42 execution:
43 sandboxProfile: "sandbox:t2"
44 egressPolicy: "egress:t2-restricted"
45 secretsBrokerRef: "secrets://broker/v1" # tools get secrets; models do not
46
47 result:
48 status: "executed" # denied|executed|failed
49 artifacts:
50 - kind: "pull_request"
51 ref: "https://github.com/anboas/Whitepaper/pull/123"
52 error: null
53
54 integrity:
55 requestHash: "sha256:..." # canonical hash of request fields
56 resultHash: "sha256:..." # canonical hash of result fields
57 signatures:
58 gateway:
59 keyId: "k-acp-gw-01"
60 sig: "base64:..."

Minimum required properties (non-exhaustive):

• Identity binding: agentId + persona + (where available) runtime attestation.
• Authority binding: trustScopeRef + policyBundleRef + policyHash.
• Context binding: references to context bundle hashes (never free-text provenance).
• Idempotency: idempotencyKey for any operation that can be retried.
• Approval traceability: explicit approvalsRequired and approvalsGranted (with signatures) for

high-consequence actions.
• Canonical integrity: requestHash/resultHash and a gateway signature over them.

6.8.2 Tool/skill supply chain governance (registry + provenance tiers)

Agent ecosystems expand by attaching tools, connectors, and “skills.” Open marketplaces make
that expansion fast—and create a predictable attack surface.
The ACP therefore treats tools and skills as a governed supply chain:

• Provenance tiers.
– Tier A: first-party tools (Department-owned) with full pipeline attestation
– Tier B: vetted third-party tools (signed + scanned + evaluated + constrained)
– Tier C: untrusted/community tools (denied by default; allowed only in isolated sandboxes and

low-tier scopes, if allowed at all)
• Onboarding pipeline (minimum).

ACP-RA White Paper 17 v0.1 | February 2026

– manifest + schema validation
– dependency analysis + SBOM generation
– static analysis and policy linting
– sandbox behavior tests and tool eval packs
– signing and publishing to a controlled registry
– runtime attestation (hash/signature match) enforced by the gateway

• Operational controls.
– quarantine workflows for tools with anomalous behavior
– revocation and emergency denylist distribution
– registry reputation signals (usage history, incident linkage)

The goal is simple: adding tools expands capability without expanding unbounded risk.

6.8.3 Computer-use / GUI actuation tools (OS-level and RPA class)

A special class of tools exists where the “tool” is a computer: mouse/keyboard control, screenshots,
UI navigation, and OS-level actions. This class is powerful and fragile, and it is high-risk by default.
Policy requirements for computer-use tools:

• run inside isolated desktop environments (VDI/sandbox) with governed network egress.
• restrict accessible applications and UI surfaces by scope.
• capture structured evidence: screenshots and/or session capture at policy-defined sampling rates.
• enforce per-step budgets (clicks/keystrokes/time) and fan-out limits.
• treat this class as T2 by default unless explicitly lowered by risk assessment and controls.
• require veto windows or approvals for irreversible actions (credential changes, external communi-

cations, destructive operations).

These constraints turn “computer use” from a hidden capability into a governed actuation surface.

6.9 Inter-Agent Gateway (IAG)
Multi-agent systems only scale safely if agent-to-agent communication is treated like a governed
mesh.
The IAG is intentionally protocol-neutral. It can front interoperable protocols such as the
Agent2Agent (A2A) protocol or the Model Context Protocol (MCP)—or successor protocols that
provide similar semantics. The ACP does not bet on a single wire protocol; it standardizes the
policy surface required no matter what carries the message.
Required policy surface (independent of protocol):

• mutual authentication of sender/receiver identities and runtime provenance
• authorization of message types and peer relationships by trust scope + persona + environment
• schema validation (typed envelopes; no arbitrary prompt blobs as transport)
• rate limits + TTLs + fan-out caps to prevent cascades
• provenance: message hashes, policy hash, sender/receiver ids

ACP-RA White Paper 18 v0.1 | February 2026

• circuit breakers: cascade detection and automatic throttling/quarantine triggers
• evidence emission: ensemble graph metadata sufficient for replay and triage

6.9.1 Inter-agent message envelope (minimum schema)

The IAG MUST enforce typed message envelopes.

1 envelopeVersion: 1
2 messageId: "msg-<uuid>"
3 conversationId: "conv-<uuid>" # stable thread identifier
4 sequenceNumber: 42 # monotonic per (sender, conversation)
5 sentAt: "2026-02-10T15:04:07Z"
6 expiresAt: "2026-02-10T15:06:07Z" # TTL is mandatory
7
8 sender:
9 agentId: "npe:agent/orchestrator-77c9"

10 persona: "orchestrator"
11 runtimeAttestationRef: "attest://runtime/sha256:..." # optional
12
13 recipients:
14 - agentId: "npe:agent/logistics-55bd"
15 persona: "planning"
16
17 scope:
18 workUnitId: "wu-opsplan-2026-02-10-0007"
19 trustScopeRef: "trustscope://ops-planning/T2@sha256:..."
20 policyBundleRef: "policy://bundle/2026-02@sha256:..."
21
22 message:
23 type: "task.assign" # typed allowlist
24 schema: "a2a.task.assign.v1"
25 fanOutClass: "bounded" # bounded|broadcast (policy-controlled)
26 payloadRef: "evidence://blob/sha256:..." # or inline payload
27
28 integrity:
29 payloadHash: "sha256:..."
30 previousMsgHash: "sha256:..." # optional chaining
31 nonce: "b64:..." # per-message uniqueness
32 signatures:
33 sender:
34 keyId: "k-agent-orch-01"
35 sig: "base64:..."

6.9.2 Replay protection and sequencing

Agents and gateways MUST treat inter-agent messaging as an adversarial channel unless protected.
Minimum anti-replay requirements:

• Monotonic sequence numbers: sequenceNumber MUST be strictly increasing per (sender, conver-

ACP-RA White Paper 19 v0.1 | February 2026

sationId).
• TTL enforcement: expiresAt MUST be enforced; expired messages are dropped.
• Nonce + anti-replay cache: receivers maintain a sliding anti-replay window keyed by (sender,

conversationId, sequenceNumber, nonce).
• Signature coverage: the sender signature MUST cover recipients, sequenceNumber, TTL, pay-

loadHash, workUnitId, trustScopeRef, and policyBundleRef.
• Out-of-order handling: out-of-order delivery is allowed only within a bounded window; outside

the window, messages are rejected or quarantined.
• Degraded-mode behavior: if partitions prevent timely delivery, policy MUST specify whether

to pause, fall back to cached scopes, or tighten authority rather than accept unauthenticated
messages.

6.9.3 A2A to MCP crosswalk (how both map to ACP boundaries)

• Agent-to-agent delegation and swarm messaging terminates at the inter-agent gateway.
• Agent-to-tool and agent-to-data connectors terminate at the tool/action gateway and the con-

text/data gateway.
• Connector-initiated model sampling terminates at the model gateway.

A2A and MCP address different interoperability surfaces. The ACP governs both by applying the
same policy primitives—identity, trust scope, budgets, and evidence—at the appropriate gateway.
The design goal is not to predict which protocol dominates. The goal is to ensure that whichever
protocols are used, they terminate at governed boundaries with consistent controls.

6.10 Evaluation harness (functional + adversarial) and tool eval packs
The evaluation harness provides:

• baseline functional tests (“golden tasks”).
• policy conformance tests (permission boundaries, tool misuse attempts).
• adversarial tests (retrieval injection, poisoning simulations, inter-agent influence scenarios).
• regression gates against last-known-good.
• rollback/containment rehearsal checks.

6.10.1 Tool contract design (tools as contracts for non-deterministic callers)

Agents call tools differently than deterministic software. Tool APIs must be designed as contracts
for a non-deterministic caller:

• typed inputs and outputs (schema-first).
• explicit preconditions and failure modes (deterministic error taxonomy).
• bounded side effects (idempotent operations where possible).
• small, verifiable outputs (avoid mixing commentary with data payloads).
• safe defaults (read-only by default; explicit “apply” actions separated and tiered).
• strict secrets boundaries (no credential material in tool outputs).

ACP-RA White Paper 20 v0.1 | February 2026

6.10.2 Tool eval packs (gating tool onboarding and tool changes)

New tools and tool changes require tool-specific eval packs, including:

• misuse probes (attempted actions out of scope).
• output-injection probes (tool outputs crafted to steer agents).
• retry amplification tests (error storms and idempotency validation).
• performance/latency tests (avoid tool DoS cascades).
• “computer use” class tests (UI ambiguity, evidence capture, step budgets).

6.11 Evidence ledger and replay service
Evidence is a structured event stream supporting:

• attribution: who/what/under which scope/policy.
• replay: reconstructing intent → context → decision → action → outcome.
• continuous authorization: evidence inside the system boundary.

6.11.1 Swarm-scale evidence: hierarchical aggregation for practical replay

Swarm replay can be prohibitively expensive if every message and trace is retained at full fidelity.
ACP uses hierarchical evidence aggregation:

Per-agent evidence (always-on) • action envelopes.
• inter-agent message envelopes (metadata always; payload by tier/trigger).
• context bundle hashes and provenance pointers (payload capture by tier/trigger).
• policy decisions (inputs/outputs + policy hash).
• drift/anomaly signals (summaries).

Ensemble evidence (always-on, lightweight) • coordination graph metadata (A2A edges by
type and time).

• arbitration outcomes (conflicts, quorums, deadlocks/timeouts).
• budget burn-down time series (aggregate and per-role).
• work-unit DAG summaries (dependencies, blocks, cancellations).

Selective enrichment (triggered) Full message bodies, full context payloads, and detailed plan-
ning traces captured on:

• anomaly thresholds.
• high-consequence actions.
• investigation holds.

This yields three replay tiers:

• Macro replay: graph, budgets, and key decisions for fast triage.
• Meso replay: selected agents and intervals for root cause on a suspected subgraph.
• Micro replay: full payloads for high-consequence or legal and incident requirements.

ACP-RA White Paper 21 v0.1 | February 2026

6.12 Observability and SOC/CSSP integration
ACP emits telemetry so operations teams can see:

• allow/deny rates by scope/tool/data tag.
• tool-call distributions and anomaly signals.
• model routing changes and regression alerts.
• work-unit status and stall signals (blocked, deadlocked, retry storms).
• containment events (quarantine/kill/rollback) with evidence pointers.

6.12.1 Swarm observability: SOC/CSSP views

For ensembles, the primary failure mode is a coordination cascade. ACP provides swarm-specific
views:

Dashboards • coordination graph (A2A edges by type over time; fan-out heatmap).
• arbitration events (conflicts, quorums, leader changes, deadlocks/timeouts).
• budget burn-down (aggregate + per-role + anomaly overlays).
• ensemble drift (distribution shifts across actions/plans).
• work-unit DAG health (dependency blocks, repeated stalls).
• containment posture (quarantined members, degraded mode active, policy lockdown status).

Alertable signals • fan-out spikes and retry storms.
• message-type violations (out-of-scope coordination attempts).
• budget exhaustion anomalies (loops, adversarial stimulus).
• tool-call distribution shifts at ensemble level.
• quarantine and kill-switch activations with evidence references.

6.13 Containment and revocation
Containment operates at multiple levels:

• agent kill: stop runtime, revoke credentials, invalidate scopes.
• agent quarantine: keep runtime alive but tool-isolated for triage.
• ensemble freeze: pause coordination, preserve state for replay.
• ensemble degrade: force safe mode (local models only; read-only tools).
• policy lockdown: tighten scopes rapidly across the ensemble.
• work-unit freeze: pause one work unit while allowing others to continue.

Containment must be fast (seconds), attributable, logged, and—when safe—reversible.

6.14 Resource governance (budget engine)
Budgets are policy-enforced constraints:

• compute (GPU seconds, CPU time).
• tokens and inference cost.

ACP-RA White Paper 22 v0.1 | February 2026

• tool calls by category.
• data egress/bandwidth.
• time.
• power (watt-hours) in edge deployments.
• risk budget (number of high-consequence actions per window).

Budget allocation can be static by tier or dynamic by mission priority (see “Patterns”).

6.15 Federation and cross-domain transfer
ACP supports federation by treating identity, scopes, context, and evidence as portable artifacts:

• identity federation aligned to ICAM patterns.
• scope translation gates across enclaves (intersection + local caveats).
• cross-domain context transfer as sanitized context bundles (hashes/pointers when payload transfer

is forbidden).
• evidence bridging: prove linkage without leaking content.

7 Control loops (how the system behaves)
7.1 Action loop: intent → policy → mediated action → evidence

Figure 2: Policy-Enforced Tool Invocation (Action Envelope). The tool and action gateway acts as
an enforcement point. It consults a policy decision point with the trust scope and attribute-based
access control, optionally invokes approvals, emits tamper-evident evidence, and integrates with
observability and security operations workflows.

Narrative flow:

ACP-RA White Paper 23 v0.1 | February 2026

1. A work unit is created and bound to a trust scope and budget allocation.
2. An agent forms an intent (“open PR,” “update config,” “provision account”).
3. The agent requests action via the tool and action gateway (not direct tool access).
4. The gateway calls the policy engine (PDP) with scope, work-unit constraints, attributes, and

environment signals.
5. The policy decision returns allow or deny, required approvals, and budget impacts.
6. Execution runs in a sandbox with brokered secrets and governed egress.
7. The outcome is sealed as an action envelope and written to the evidence ledger.

7.2 Governance loop: artifacts → tests and evals → promotion → enforcement
ACP governance is GitOps-oriented:

• trust scopes, tool catalogs, interop policies, model routes, and eval packs are versioned artifacts.
• CI validates schemas, runs evals, runs adversarial tests.
• signed bundles are promoted to enforcement points.
• telemetry and evidence feed continuous monitoring and after-action improvement.

ACP-RA White Paper 24 v0.1 | February 2026

Figure 3: Governance-as-Code Lifecycle (Compact). Policy, manifests, and evaluation packs are
versioned artifacts. The build pipeline and evaluation harnesses gate promotion of signed bundles
to enforcement points, while evidence and cATO/continuous risk consume emitted telemetry and
replayable logs.

ACP-RA White Paper 25 v0.1 | February 2026

8 Multi-agent governance (ensembles and swarms)
Multi-agent behavior is where risk and value both amplify. Without explicit ensemble governance,
emergent behavior becomes an incident generator: cascading retries, deadlocks, adversarial influence
via compromised peers, and “collective hallucination” reinforced through shared memory.
ACP treats ensembles as first-class objects.

8.1 Coordination patterns (policy-selectable)
Common patterns are supported as declared coordination policies:

• Hierarchical (orchestrator → workers): orchestrator decomposes tasks, workers execute
narrow scopes. Strong accountability and containment.

• Peer-to-peer: distributed planning with explicit arbitration and shared-state controls.
• Market/auction scheduling: useful when missions compete for scarce compute/power/bandwidth;

requires anti-gaming and auditability.
• Leader election/rotating coordinator: avoids single points of failure; requires signed leases

and fast failover.

8.2 Trust scope composition and delegation
• Worker scopes are strict subsets of orchestrator scope (intersection).
• Orchestrators delegate budgets as allowances; allowances are reclaimable and time-bounded.
• Ensembles inherit the maximum consequence tier they are capable of initiating unless explicitly

forbidden by contract.

8.3 Shared state governance
Shared state is governed by:

• tag-based access controls and minimization rules.
• concurrency semantics (leases, idempotency, OCC).
• replayability (state changes reference evidence).
• “memory hygiene” policies (retention, poisoning mitigation, periodic pruning).

8.4 Arbitration and deadlock prevention
Ensembles declare:

• conflict policies (who wins, quorum rules, tie-breakers).
• TTLs for tasks/messages.
• backoff and retry semantics.
• escalation rules for unresolved conflicts.

Deadlocks and retry storms are both reliability incidents and security risks.

8.5 Swarm budgets and dynamic allocation
Budgets exist at ensemble and member levels:

ACP-RA White Paper 26 v0.1 | February 2026

• ensemble aggregate budgets bound overall effect.
• per-member budgets prevent a single agent from exhausting resources.
• dynamic reallocation supports mission priorities under constraint.

Allocation mechanisms can include:

• priority queues (mission tiered).
• budget auctions for scarce resources.
• throttling policies during degraded modes.

8.6 Swarm containment without collapse
Containment must be able to isolate one misbehaving member without collapsing collective behavior:

• quarantine one agent (tool isolation) while the ensemble continues.
• freeze coordination while preserving state for replay.
• degrade ensemble mode (local models only; read-only tools) when attack indicators rise.

9 Adversarial robustness and contested/degraded operation
ACP assumes sophisticated adversaries and treats “benign” inputs as untrusted until proven
otherwise.

9.1 Threat classes
• context and data poisoning (including retrieval hijacking and shared-memory poisoning).
• tool output deception and supply chain compromise.
• model extraction/inversion via repeated calls.
• goal drift and reward hacking (where feedback loops exist).
• control plane subversion (policy engine, evidence ledger, revocation channels).
• inter-agent adversarial influence (compromised peers or malicious interop payloads).

9.2 Defenses engineered into ACP
• provenance everywhere (context bundles, message hashes, action envelopes).
• sandboxed execution and secrets brokerage.
• strict egress control and budget enforcement.
• runtime drift detection (behavior distribution shifts vs baselines).
• circuit breakers at the inter-agent gateway and tool gateway.
• continuous adversarial eval packs as promotion gates.
• distributed enforcement with cached signed policy bundles to survive PDP outages.
• tamper-evident evidence with integrity checks and separate control-plane segmentation.

ACP-RA White Paper 27 v0.1 | February 2026

9.3 Degraded modes (policy-driven safe behavior)
Degraded operation is a declared policy mode, not a surprise outage.
Examples:

• Disconnected: no external model gateway; local inference only; strict tool denylist; increased
escalation.

• Intermittent: queue actions; delayed approvals; increase evidence capture for later sync.
• Denied-model: forced fallback to smaller/local models; reduced autonomy; tightened budgets.
• Human-handover: if confidence drops or novelty rises beyond threshold, shift to human decision

authority.

Trust scopes declare which degraded modes are allowed and what behaviors change per mode.

10 Human oversight, escalation, and Responsible AI alignment
Human involvement is not binary. It is engineered as governed transitions based on confidence,
novelty, consequence, and ethical constraints.

10.1 Escalation taxonomy (what triggers humans)
Escalation triggers include:

• Confidence: low calibration, conflicting sources, high uncertainty in plan selection.
• Novelty: new tool, new data domain, new environment/enclave, unusual dependencies.
• Consequence: irreversible actions, high-impact changes, public/external communications.
• Ethical/policy flags: restricted categories, high-impact decision domains, questionable prove-

nance.
• Behavioral anomalies: drift signals, cascade patterns, tool-use distribution shifts.

Trust scopes declare which triggers are binding and what approvals/quorums apply.

10.2 Override surfaces are governed
Human override is a privileged act:

• role-limited, time-bounded, and scoped to specific actions.
• dual-control for high-consequence overrides.
• recorded as evidence with justification.
• auditable and replayable.

10.3 Hybrid teaming patterns
ACP supports multiple teaming modes by tier:

• agent proposes, human decides.
• agent executes with human veto window.
• agent executes under policy with post-hoc review (low-tier only).

ACP-RA White Paper 28 v0.1 | February 2026

10.4 Responsible AI alignment (operationalized as controls)
DoW AI ethical principles are implemented as control-plane behaviors:

• Responsible: attributable ownership; governed overrides; audit trails.
• Equitable: eval packs include bias/disparate-impact checks where relevant; drift monitoring

watches for performance skews.
• Traceable: context bundles, action envelopes, and policy decisions enable replay; provenance is

mandatory for higher tiers.
• Reliable: regression gates and continuous monitoring enforce stability; degraded-mode policies

avoid brittle failure.
• Governable: kill/quarantine/rollback are first-class; scopes can be tightened centrally and

enforced at distributed PEPs.

After-action review loops feed back into trust scope refinement, eval pack expansion, and policy
updates.

11 Composability, federation, and cross-enclave interoperability
ACP is designed to operate in federated DoW reality.

11.1 Federation patterns
• identity federation aligned to ICAM patterns for mission partners and NPEs.
• portable trust scopes as signed artifacts with issuer claims and validity windows.
• translation gates when importing scopes into a new enclave:
• intersect capabilities (never union).

– map vocabulary and tool catalogs to local enforcement points
– attach local caveats and retention requirements
– record translation as evidence

11.2 Cross-domain context transfer
Cross-domain handoffs use context bundles:

• sanitize payloads per policy.
• export hashes/pointers when payload transfer is forbidden.
• maintain evidence linkage across domains without leaking content.

11.3 Portability across clouds, on-prem, and edge
ACP achieves portability by standardizing:

• artifact schemas (scope/policy/interop/eval/evidence/work-units).
• gateway behaviors (tool, model, context, inter-agent).
• evidence event formats.

ACP-RA White Paper 29 v0.1 | February 2026

This allows consistent enforcement whether workloads run behind CNAP patterns, on K8s factories,
or on disconnected edge nodes.

12 Lifecycle of the ACP itself
The ACP will evolve at the same tempo it enables. Control plane upgrades must not break
enforcement.

12.1 Safe upgrades and migrations
• policy bundles are versioned and signed; PEPs support dual policy versions during transitions.
• trust scope schema versioning with migration tooling and CI validation.
• tool/skill registry schema migrations preserve provenance and scanner evidence.
• rollback by switching bundle pointers to last-known-good.
• compatibility tests and adversarial eval packs required for ACP changes.

12.2 Load, chaos, and attack simulation
ACP is tested like a mission system:

• load tests with large ensembles, high A2A chatter, and many concurrent work units.
• chaos experiments (PDP outage, model gateway denial, degraded network).
• red-team simulations targeting policy, ledger, registry, and revocation channels.
• replay drills: reconstruct ensemble failures using macro→meso→micro evidence tiers.

13 Patterns (reusable implementation guidance)
13.1 Pattern: “Work units as the unit of supervision”
Humans supervise work units, not tool calls:

• each work unit is bounded by scope and budgets.
• outputs are reviewed at artifact/diff level.
• escalation triggers bring humans into the loop at the right time.

13.2 Pattern: “Policy-centered mesh”
Central policy decisions, distributed enforcement at every boundary (tool, context, model, inter-agent,
work-unit transitions).

13.3 Pattern: “Bulkhead gateways”
Gateways as bulkheads: tool sandboxing, context controls, inter-agent circuit breakers, and supply-
chain attestation.

ACP-RA White Paper 30 v0.1 | February 2026

13.4 Pattern: “Budgeted autonomy”
Budgets treated as policy and enforced at runtime; budgets drive safe degradation and allocation
under scarcity.

13.5 Pattern: “Tool supply chain governance”
Tools and skills are onboarded and operated like software supply chains: signing, scanning, eval
packs, attestation, and quarantine.

13.6 Pattern: “Evidence-first releases”
No promotion without evidence: eval packs, policy hashes, scope signatures, and replayability proofs.

13.7 Pattern: “Ensemble contract”
Multi-agent deployments ship with an ensemble contract defining orchestration, arbitration, shared
state, budgets, and containment.

14 Metrics, success criteria, and a transition roadmap
14.1 Success metrics
Tempo and delivery - time from scope/policy PR to deployable signed bundle. - work-unit
completion time distributions by tier and mission thread. - model/tool update cycle time (shadow
→ canary → promote → rollback). - mean time to quarantine/revoke (MTTQ / MTTR-Q).
Safety and governance - policy violation attempts per tool/data category. - approval compliance
rate for high-tier actions. - evidence completeness rate (required fields present per action). - replay
success rate (can reconstruct runs to acceptable fidelity).
Swarm reliability - deadlock/livelock frequency. - cascade containment time (detect → throttle
→ isolate). - ensemble success rate on golden scenarios.
Tool supply chain - % of tool executions with verified signatures/attestation. - time-to-revoke
malicious or unstable tools. - incidence rates by provenance tier (Tier A/B/C).
Adversarial robustness - red-team pass rate by attack class. - drift detection sensitivity/precision.
- anomaly response time (detect → contain).
Resources - compute and power per unit effect (task completion per watt-hour). - egress per
mission outcome. - budget overrun frequency and root causes.

14.2 Maturity levels (ACP-conformance)
• Level 0: copilot sprawl; no mediated tools; ad-hoc prompts; minimal evidence.
• Level 1: identified agents (NPE), basic logging, manual controls.
• Level 2: governed actions (trust scopes + tool gateway + evidence ledger).
• Level 3: supervised autonomy (work units + eval gates + drift monitoring + rehearsed

rollback/containment).

ACP-RA White Paper 31 v0.1 | February 2026

• Level 4: swarm governance (ensemble contracts + inter-agent gateway + arbitration + swarm
budgets + swarm dashboards).

• Level 5: federated & contested (cross-enclave scope translation + degraded modes + control-
plane survivability drills + registry hardening).

14.3 Transition roadmap (copilots → governed agents → supervised autonomy
→ governed swarms)

1. Instrument first: standard evidence schema; onboard agents as NPEs.
2. Mediate doing: enforce tool gateway; budgets; sandboxing; secrets brokerage; registry onboard-

ing for tools.
3. Codify scopes: require trust scope manifests; signatures; policy bundle enforcement.
4. Introduce work units: supervise long-running tasks; bind outputs to work_unit_id; integrate

approvals and evidence drill-down.
5. Gate releases: eval packs as promotion gates; canary/rollback for tools/models/policies.
6. Scale to ensembles: ensemble contracts; inter-agent gateway; arbitration rules; swarm observ-

ability.
7. Federate: scope translation; cross-domain context/evidence bridging; portability across environ-

ments.

15 Recommendations
• Treat every agent as a non-person entity with enterprise identity attributes and lifecycle controls.
• Require a signed trust scope manifest for every agent and ensemble, and compose authority by

intersection.
• Make work units the unit of supervision: budgets, dependencies, checkpoints, and evidence roots.
• Mediate all side effects through gateways (tool, context, model, inter-agent) with policy enforce-

ment and audit.
• Gate promotions with eval packs and adversarial tests; require rollback and containment rehearsal.

16 Conclusion
ACP-RA treats autonomy as an engineered control system. It separates planning from doing,
centralizes policy decisions while distributing enforcement, and makes evidence and containment
first-class. This enables faster iteration without turning speed into unmanaged risk, including for
multi-agent ensembles operating in contested and degraded environments.

17 Appendix: Minimal artifact set (GitOps-ready)
At minimum, version-control the following:

ACP-RA White Paper 32 v0.1 | February 2026

• trust-scope/*.yaml.
• ensemble/*.yaml.
• work-units/*.yaml (or work-unit schemas and templates).
• tool-catalog.yaml.
• tool-registry/*.yaml (tool manifests, provenance tier, signatures, SBOM pointers).
• inter-agent-policy.yaml.
• mcp-connectors/*.yaml (MCP servers/resources/prompts allowlists, if used).
• model-routing.yaml.
• context-sources.yaml.
• eval-packs/*.yaml.
• tool-evals/*.yaml.
• evidence-schema/*.json.
• dashboards/*.json (SIEM/SOAR/SOC views).
• runbooks/*.md (containment, rollback, degraded-mode transitions).

18 Appendix: Example ensemble contract (illustrative)

1 apiVersion: acp.dod/v1
2 kind: Ensemble
3 metadata:
4 name: ops-planning-ensemble-alpha
5 spec:
6 consequenceTier: T2
7 orchestratorRef: "npe:agent/orchestrator-77c9"
8 members:
9

10 - ref: "npe:agent/geo-analyst-112a"
11 role: analysis
12 - ref: "npe:agent/logistics-55bd"
13 role: planning
14 - ref: "npe:agent/policy-checker-9ef1"
15 role: safety
16 coordination:
17 pattern: hierarchical
18 arbitration:
19 conflictPolicy: orchestrator-final
20 quorumRules:
21

22 - actionType: irreversible
23 quorum: "2-of-3"
24 timeouts:
25 taskTTLSeconds: 900
26 messageTTLSeconds: 120
27 budgets:
28 aggregate:

ACP-RA White Paper 33 v0.1 | February 2026

29 gpuSeconds: 7200
30 toolCallsPerHour: 300
31 egressMBPerHour: 50
32 perRole:
33 analysis:
34 toolCallsPerHour: 80
35 safety:
36 toolCallsPerHour: 30
37 interAgentPolicy:
38 requireSignedMessages: true
39 allowedMessageTypes:
40

41 - task.assign
42 - task.result
43 - artifact.share
44 rateLimits:
45 maxMessagesPerMinutePerMember: 120
46 fanOutCaps:
47 maxRecipientsPerMessage: 8
48 safety:
49 quarantineOn:
50

51 - signal: drift.high
52 - signal: iag.cascade
53 degradedModesAllowed:
54

55 - intermittent
56 - denied-model

19 Appendix: Example work unit template (illustrative)

1 apiVersion: acp.dod/v1
2 kind: WorkUnit
3 metadata:
4 name: "wu-opsplan-2026-02-10-0007"
5 spec:
6 trustScopeRef: "trustscope://ops-planning/T2@sha256:..."
7 policyBundleRef: "policy://bundle/2026-02@sha256:..."
8 budgets:
9 gpuSeconds: 900

10 toolCalls: 50
11 egressMB: 10
12 wallClockSeconds: 1800
13 dependencies:
14 requires:
15

16 - "wu-opsplan-2026-02-10-0002"
17 checkpoints:

ACP-RA White Paper 34 v0.1 | February 2026

18 frequencySeconds: 180
19 artifacts:
20

21 - type: "plan"
22 - type: "diff"
23 - type: "evidence-summary"
24 escalation:
25 onBlockedSeconds: 300
26 onNovelToolUse: true

20 Appendix: References (authoritative and industry sources)
URLs are listed for traceability; downstream repositories should pin to specific ver-
sions/hashes where possible.

20.1 DoW / DoW CIO
• DoW CIO, Reference Architecture Description (June 2010): https://dodcio.defense.gov/P

ortals/0/Documents/Ref_Archi_Description_Final_v1_18Jun10.pdf.
• DoW CIO, DoW Zero Trust Reference Architecture v2.0 (2022): https://dodcio.defense.gov

/Portals/0/Documents/Library/%28U%29ZT_RA_v2.0%28U%29_Sep22.pdf.
• DoW CIO, ICAM Federation Framework (2024): https://dodcio.defense.gov/Portals/0/D

ocuments/Cyber/ICAM-FederationFramework.pdf.
• DoW CIO, Cloud Native Access Point (CNAP) Reference Design v1.0 (2021): https://dodcio

.defense.gov/Portals/0/Documents/Library/CNAP_RefDesign_v1.0.pdf.
• DoW CIO, DevSecOps Continuous Authorization Implementation Guide (2024): https://dodc

io.defense.gov/Portals/0/Documents/Library/DoDCIO-ContinuousAuthorizationImplem
entationGuide.pdf.

• DoW CIO, cATO Evaluation Criteria (2024): https://dodcio.defense.gov/Portals/0/Doc
uments/Library/cATO-EvaluationCriteria.pdf.

• DoW CIO, Continuous Authorization to Operate (cATO) memo (2022): https://media.defe
nse.gov/2022/Feb/03/2002932852/-1/-1/0/Continuous-Authorization-TO-Operate.PDF.

• DoW CIO, AI Cybersecurity Risk Management Tailoring Guide (2025): https://dodcio.defen
se.gov/Portals/0/Documents/Library/AI-CybersecurityRMTailoringGuide.pdf.

• DoW, Implementing Responsible AI in the DoW (May 2021): https://media.defense.gov/
2021/May/27/2002730593/-1/-1/0/Implementing-Responsible-Artificial-Intelligenc
e-IN-the-Department-OF-Defense.PDF.

• DoW, Responsible AI Strategy and Implementation Pathway (June 2022): https://media.defe
nse.gov/2022/Jun/22/2003022604/-1/-1/0/Department-of-Defense-Responsible-Artif
icial-Intelligence-Strategy-and-Implementation-Pathway.PDF.

• DoDD 3000.09, Autonomy in Weapon Systems (Jan 2023): https://www.esd.whs.mil/portal
s/54/documents/dd/issuances/dodd/300009p.pdf.

ACP-RA White Paper 35 v0.1 | February 2026

https://dodcio.defense.gov/Portals/0/Documents/Ref_Archi_Description_Final_v1_18Jun10.pdf
https://dodcio.defense.gov/Portals/0/Documents/Ref_Archi_Description_Final_v1_18Jun10.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/%28U%29ZT_RA_v2.0%28U%29_Sep22.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/%28U%29ZT_RA_v2.0%28U%29_Sep22.pdf
https://dodcio.defense.gov/Portals/0/Documents/Cyber/ICAM-FederationFramework.pdf
https://dodcio.defense.gov/Portals/0/Documents/Cyber/ICAM-FederationFramework.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/CNAP_RefDesign_v1.0.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/CNAP_RefDesign_v1.0.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoDCIO-ContinuousAuthorizationImplementationGuide.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoDCIO-ContinuousAuthorizationImplementationGuide.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoDCIO-ContinuousAuthorizationImplementationGuide.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/cATO-EvaluationCriteria.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/cATO-EvaluationCriteria.pdf
https://media.defense.gov/2022/Feb/03/2002932852/-1/-1/0/Continuous-Authorization-TO-Operate.PDF
https://media.defense.gov/2022/Feb/03/2002932852/-1/-1/0/Continuous-Authorization-TO-Operate.PDF
https://dodcio.defense.gov/Portals/0/Documents/Library/AI-CybersecurityRMTailoringGuide.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/AI-CybersecurityRMTailoringGuide.pdf
https://media.defense.gov/2021/May/27/2002730593/-1/-1/0/Implementing-Responsible-Artificial-Intelligence-IN-the-Department-OF-Defense.PDF
https://media.defense.gov/2021/May/27/2002730593/-1/-1/0/Implementing-Responsible-Artificial-Intelligence-IN-the-Department-OF-Defense.PDF
https://media.defense.gov/2021/May/27/2002730593/-1/-1/0/Implementing-Responsible-Artificial-Intelligence-IN-the-Department-OF-Defense.PDF
https://media.defense.gov/2022/Jun/22/2003022604/-1/-1/0/Department-of-Defense-Responsible-Artificial-Intelligence-Strategy-and-Implementation-Pathway.PDF
https://media.defense.gov/2022/Jun/22/2003022604/-1/-1/0/Department-of-Defense-Responsible-Artificial-Intelligence-Strategy-and-Implementation-Pathway.PDF
https://media.defense.gov/2022/Jun/22/2003022604/-1/-1/0/Department-of-Defense-Responsible-Artificial-Intelligence-Strategy-and-Implementation-Pathway.PDF
https://www.esd.whs.mil/portals/54/documents/dd/issuances/dodd/300009p.pdf
https://www.esd.whs.mil/portals/54/documents/dd/issuances/dodd/300009p.pdf

20.2 Industry protocols and agent platform patterns
• OpenAI, Introducing Codex (2025): https://openai.com/index/introducing-codex/.
• OpenAI, Introducing the Codex app (2026): https://openai.com/index/introducing-the-c

odex-app/.
• Anthropic, Writing effective tools for agents — with agents (2025): https://www.anthropic.co

m/engineering/writing-tools-for-agents.
• Anthropic Claude Docs, Computer use tool (2025/2026): https://platform.claude.com/docs

/en/agents-and-tools/tool-use/computer-use-tool.
• Google Developers Blog, A2A: a new era of agent interoperability (2025): https://developers

.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/.
• Google Developers Blog, Google Cloud donates A2A to Linux Foundation (2025): https:

//developers.googleblog.com/en/google-cloud-donates-a2a-to-linux-foundation/.
• Linux Foundation, Agent2Agent Protocol Project launch (2025): https://www.linuxfoundatio

n.org/press/linux-foundation-launches-the-agent2agent-protocol-project-to-ena
ble-secure-intelligent-communication-between-ai-agents.

• Model Context Protocol, Specification (2025-06-18): https://modelcontextprotocol.io/sp
ecification/2025-06-18.

• Model Context Protocol, Sampling (2025-06-18): https://modelcontextprotocol.io/specif
ication/2025-06-18/client/sampling.

20.3 Tool/skill ecosystem risk signals (supply chain lessons)
• The Verge, OpenClaw’s AI ‘skill’ extensions are a security nightmare (2026): https://www.th

everge.com/news/874011/openclaw-ai-skill-clawhub-extensions-security-nightmare.
• Reuters, China warns of security risks linked to OpenClaw open-source AI agent (2026): https:

//www.reuters.com/world/china/china-warns-security-risks-linked-openclaw-ope
n-source-ai-agent-2026-02-05/.

• Cisco, Personal AI Agents like OpenClaw Are a Security Nightmare (2026): https://blogs.ci
sco.com/ai/personal-ai-agents-like-openclaw-are-a-security-nightmare.

20.4 Prior papers (conceptual anchors)
• Adam Boas, From AI Force Multiplication to Force Creation: https://anboas.github.io/ada

mboas.info/writing/agentic-force-creation/.
• Adam Boas, From PDFs to Pull Requests (Code-as-Policy): https://anboas.github.io/ada

mboas.info/writing/code-as-policy/.

ACP-RA White Paper 36 v0.1 | February 2026

https://openai.com/index/introducing-codex/
https://openai.com/index/introducing-the-codex-app/
https://openai.com/index/introducing-the-codex-app/
https://www.anthropic.com/engineering/writing-tools-for-agents
https://www.anthropic.com/engineering/writing-tools-for-agents
https://platform.claude.com/docs/en/agents-and-tools/tool-use/computer-use-tool
https://platform.claude.com/docs/en/agents-and-tools/tool-use/computer-use-tool
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://developers.googleblog.com/en/google-cloud-donates-a2a-to-linux-foundation/
https://developers.googleblog.com/en/google-cloud-donates-a2a-to-linux-foundation/
https://www.linuxfoundation.org/press/linux-foundation-launches-the-agent2agent-protocol-project-to-enable-secure-intelligent-communication-between-ai-agents
https://www.linuxfoundation.org/press/linux-foundation-launches-the-agent2agent-protocol-project-to-enable-secure-intelligent-communication-between-ai-agents
https://www.linuxfoundation.org/press/linux-foundation-launches-the-agent2agent-protocol-project-to-enable-secure-intelligent-communication-between-ai-agents
https://modelcontextprotocol.io/specification/2025-06-18
https://modelcontextprotocol.io/specification/2025-06-18
https://modelcontextprotocol.io/specification/2025-06-18/client/sampling
https://modelcontextprotocol.io/specification/2025-06-18/client/sampling
https://www.theverge.com/news/874011/openclaw-ai-skill-clawhub-extensions-security-nightmare
https://www.theverge.com/news/874011/openclaw-ai-skill-clawhub-extensions-security-nightmare
https://www.reuters.com/world/china/china-warns-security-risks-linked-openclaw-open-source-ai-agent-2026-02-05/
https://www.reuters.com/world/china/china-warns-security-risks-linked-openclaw-open-source-ai-agent-2026-02-05/
https://www.reuters.com/world/china/china-warns-security-risks-linked-openclaw-open-source-ai-agent-2026-02-05/
https://blogs.cisco.com/ai/personal-ai-agents-like-openclaw-are-a-security-nightmare
https://blogs.cisco.com/ai/personal-ai-agents-like-openclaw-are-a-security-nightmare
https://anboas.github.io/adamboas.info/writing/agentic-force-creation/
https://anboas.github.io/adamboas.info/writing/agentic-force-creation/
https://anboas.github.io/adamboas.info/writing/code-as-policy/
https://anboas.github.io/adamboas.info/writing/code-as-policy/

	Agent Control Plane Reference Architecture (ACP‑RA)
	Scope and non-goals
	Strategic drivers
	Architectural principles
	Reference architecture structure
	Conceptual view (OV‑1)

	Core vocabulary
	Agent
	Persona
	Trust Scope Manifest (TSM)
	Work unit
	Policy bundle
	Context bundle
	Action envelope
	Inter-agent message envelope
	Ensemble (swarm)

	Consequence tiers and required controls
	Threat model and trust boundaries
	Operating assumptions (adversary model)
	Trust boundaries: authority sources vs data sources
	Control invariants (MUST)
	Common attack paths ACP-RA is designed to stop

	Technical positions (required control surfaces)
	TP1 — Agent identity as NPE (ICAM-aligned)
	TP2 — Trust scopes are signed, versioned, and enforceable
	TP3 — Work units are first-class governance objects
	TP4 — Tool/Action Gateway mediates all ``doing''
	TP5 — Tools/skills are onboarded through supply-chain controls
	TP6 — Inter-Agent Gateway governs agent-to-agent communication
	TP7 — Context/Data Gateway governs context engineering
	TP8 — Model Gateway governs model routing and upgrades
	TP9 — Evaluation harness gates promotion; monitoring gates runtime
	TP10 — Evidence ledger is tamper-evident and queryable
	TP11 — Degraded-mode behaviors are declared and enforced

	Architecture components
	Agent registry and persona issuance
	Trust scope service
	Work Unit Service (WUS)
	Supervision console (Human Direction and Oversight Surface)
	Policy engine (PDP) and distributed enforcement (PEPs)
	Model gateway
	Context/Data gateway
	Tool/Action gateway
	Inter-Agent Gateway (IAG)
	Evaluation harness (functional + adversarial) and tool eval packs
	Evidence ledger and replay service
	Observability and SOC/CSSP integration
	Containment and revocation
	Resource governance (budget engine)
	Federation and cross-domain transfer

	Control loops (how the system behaves)
	Action loop: intent → policy → mediated action → evidence
	Governance loop: artifacts tests and evals promotion enforcement

	Multi-agent governance (ensembles and swarms)
	Coordination patterns (policy-selectable)
	Trust scope composition and delegation
	Shared state governance
	Arbitration and deadlock prevention
	Swarm budgets and dynamic allocation
	Swarm containment without collapse

	Adversarial robustness and contested/degraded operation
	Threat classes
	Defenses engineered into ACP
	Degraded modes (policy-driven safe behavior)

	Human oversight, escalation, and Responsible AI alignment
	Escalation taxonomy (what triggers humans)
	Override surfaces are governed
	Hybrid teaming patterns
	Responsible AI alignment (operationalized as controls)

	Composability, federation, and cross-enclave interoperability
	Federation patterns
	Cross-domain context transfer
	Portability across clouds, on-prem, and edge

	Lifecycle of the ACP itself
	Safe upgrades and migrations
	Load, chaos, and attack simulation

	Patterns (reusable implementation guidance)
	Pattern: ``Work units as the unit of supervision''
	Pattern: ``Policy-centered mesh''
	Pattern: ``Bulkhead gateways''
	Pattern: ``Budgeted autonomy''
	Pattern: ``Tool supply chain governance''
	Pattern: ``Evidence-first releases''
	Pattern: ``Ensemble contract''

	Metrics, success criteria, and a transition roadmap
	Success metrics
	Maturity levels (ACP-conformance)
	Transition roadmap (copilots → governed agents → supervised autonomy → governed swarms)

	Recommendations
	Conclusion
	Appendix: Minimal artifact set (GitOps-ready)
	Appendix: Example ensemble contract (illustrative)
	Appendix: Example work unit template (illustrative)
	Appendix: References (authoritative and industry sources)
	DoW / DoW CIO
	Industry protocols and agent platform patterns
	Tool/skill ecosystem risk signals (supply chain lessons)
	Prior papers (conceptual anchors)

