
From PDFs to Pull Requests
Code-as-Policy: Transforming Department of Defense Policy with DevSecOps

Adam Boas

Solutions Architect

January 25, 2025

Distribution: Public. Disclaimer: Views are the author’s and do not represent official policy.

Contents
1 Introduction 3

1.1 Policy Management in the Digital Era . 3
1.2 Scope and Purpose of This Paper . 4
1.3 Research Objectives and Questions . 4

2 Theoretical and Historical Foundations 4
2.1 Evolution of Version Control and Collaborative Document Systems 4
2.2 The Emergence of Docs-as-Code in Organizational Settings 5
2.3 Code-as-Policy vs. Policy Documentation . 5

3 The Case for a Version-Controlled Code-as-Policy Model 5
3.1 Enhanced Transparency and Accountability . 5
3.2 Faster Iteration and Continuous Improvement . 6
3.3 Automation, Integration, and AI Readiness . 6
3.4 Cultural and Organizational Benefits . 7
3.5 Long-Term Strategic Alignments . 7

4 Potential Challenges and Mitigation Strategies 7
4.1 Cultural Resistance and Change Management . 7
4.2 Security and Classification . 8
4.3 Governance, Compliance, and Legal Considerations . 8
4.4 Scalability Across a Large Organization . 9
4.5 Technical Infrastructure and Interoperability . 10
4.6 User-Centric Design and Accessibility for Non-Technical Stakeholders 10
4.7 AI Risks and Mitigations . 12
4.8 Long-Term Strategic Alignments . 13

5 Modernization Initiatives and the Code-as-Policy Framework 13
6 Implementation Framework 13

6.1 Phased Rollout . 13
6.2 Governance Model . 15
6.3 Training and Change Management . 16
6.4 Supporting Tools and Automations . 17

7 From Theory to Practice: Azure DevOps for Code-as-Policy 18
7.1 Repository Management . 20
7.2 .gitignore Configuration . 20
7.3 README.md: Onboarding and Documentation . 20
7.4 Automated Build Pipeline . 21
7.5 Deployment Pipeline . 24

8 Broader Impact, Real-World Examples, and Future Research 25
8.1 Digital Bureaucracy and Agile Governance . 25
8.2 AI-Augmented Policy and Decision Support . 25
8.3 Policy Enforcement via Machine-Readable Code . 27
8.4 Adaptive Threat Intelligence Integration . 27
8.5 Imaginative Future Directions . 27
8.6 Prioritizing Future Research . 29

9 On the Naming of "Code-as-Policy" 29
10 Conclusion 29
11 Glossary 30
12 Appendix: Supporting Scripts 33

12.1 Detailed Azure DevOps Pipeline Configurations . 34

2

Executive Summary
As the Department of Defense (DoD) intensifies its digital transformation-and increasingly acknowl-
edges that it must operate as a software company-policy remains mired in outdated document-centric
workflows. This whitepaper argues for a bold shift from static files (e.g., Word-to-PDF) to a "Code-
as-Policy" (CaP) model driven by version-controlled repositories. By treating policy as dynamically
managed text-much like source code-the Department of Defense can leverage the transparency,
collaboration, continuous integration, and auditability that define modern software development.
Drawing on interdisciplinary research in organizational theory, software engineering, digital gover-
nance, and artificial intelligence, this paper illuminates how CaP can deliver unprecedented agility,
accountability, and real-time adaptability across the Department of Defense enterprise. We also
examine the logistical and cultural hurdles that must be navigated-from security considerations to
entrenched habits-and outline concrete strategies for scaling this practice department-wide. Ulti-
mately, we position Code-as-Policy not merely as a technical upgrade, but as a foundational enabler
of the Department of Defense’s future readiness in an era defined by artificial intelligence, machine
learning, cloud computing, cybersecurity, and the imperative for agility and swift adaptability. This
strategic transformation not only addresses the complexities of today’s technological landscape but
also lays the groundwork for the DoD to seamlessly transition into the next era of autonomous
systems, quantum computing, and integrated cyber-physical operations.

1 Introduction

1.1 Policy Management in the Digital Era

Policy documents in the Department of Defense are foundational instruments that inform governance,
operational processes, personnel management, and strategic objectives. Over the past several decades,
the Department of Defense has published instructions and directives (e.g., Department of Defense
Instructions, or DoDIs) predominantly in static formats, such as Microsoft Word or PDF files, stored
in centralized repositories. While such formats have been adequate for a paper-centric era, they are
increasingly insufficient in an environment that demands real-time collaboration, rapid iteration,
meticulous audit trails, and seamless integration with diverse systems—including emerging artificial
intelligence (AI) platforms.
In parallel, commercial and public-sector organizations have adopted software-driven models for
information management. Version control systems—particularly Git, but also alternatives like
Perforce or Subversion—have revolutionized the way complex bodies of knowledge, including policy
and documentation, are maintained and tracked. The broad concept of "Docs-as-Code" (where
documentation is maintained as software in plain text and managed via version control) has
demonstrated notable success in technology firms, open-source communities, and governmental
agencies that require nimble processes and full traceability of changes [2]. The Department of
Defense’s movement toward digital modernization thus stands at a critical juncture where adopting
these best practices could yield substantial benefits, while still acknowledging that Git may not be
the exclusive technical solution.

Code-as-Policy White Paper 3 v0.1 | January 25, 2025

1.2 Scope and Purpose of This Paper

This paper aims to provide an exhaustive, academically grounded argument for why the Department
of Defense should migrate its policy management processes to a Code-as-Policy model. We will:

(i) Review the historical and theoretical underpinnings of Code-as-Policy models, including
relevant academic and industry research.

(ii) Explain the potential operational, strategic, and cultural advantages that the
Department of Defense stands to gain by embracing this paradigm, particularly in relation to
AI and next-generation technologies.

(iii) Address major implementation challenges—including security, governance, and cultural
shift—and propose strategies to mitigate these obstacles.

(iv) Offer a roadmap and frameworks for introducing and scaling a version-controlled policy
management system across the Department of Defense’s complex organizational structure,
with an eye toward AI-readiness.

1.3 Research Objectives and Questions

This paper aims to explore the following questions:

1. How can the Code-as-Policy model enhance the agility and accountability of policy management
within the Department of Defense?

2. What are the primary challenges in implementing a version-controlled policy framework, and
how can they be mitigated?

3. In what ways can advanced technologies like AI and blockchain augment the effectiveness of the
Code-as-Policy paradigm?

2 Theoretical and Historical Foundations

2.1 Evolution of Version Control and Collaborative Document Systems

Version control systems have been integral to software engineering since the emergence of Source
Code Control System (SCCS) in the 1970s. Over time, systems like CVS, Subversion (SVN), and
Git have refined the concept of distributed collaboration. Git’s distributed nature and lightweight
branching model have made it the de facto standard in modern software development [3]. However,
other tools like Perforce are used for certain high-scale or specialized environments, demonstrating
that version control approaches can be adapted to different organizational needs.

Key Attributes of Version Control Relevant to Policy Management:

1. Granular Change History: Every edit is captured with an author signature and timestamp,
enabling detailed blame and audit capabilities.

2. Branching and Merging: Proposed changes can be isolated, reviewed, and tested in separate
branches, then merged once approved.

3. Tagging/Releases: Official "releases" of policy can be tagged, providing clarity on recognized
versions.

4. Forking or Similar Mechanisms: Downstream organizations can "fork" the main policy repository

Code-as-Policy White Paper 4 v0.1 | January 25, 2025

or create distinct branches to add local adaptations while syncing upstream improvements.

2.2 The Emergence of Docs-as-Code in Organizational Settings

In traditional documentation workflows, content creators relied on word processors and silo-ed
distribution channels. However, large-scale technology firms like Microsoft, Google, and Amazon
have long recognized that text-based content—managed as "code"—affords significant advantages
in accuracy, version control, and collaboration [5]. This methodology, commonly referred to as
Docs-as-Code, posits that all documentation (including policy) is best managed in a repository akin
to source code, complete with standard best practices such as peer review, continuous integration,
and automated testing [6].
Academic discourse supports the notion that flattening hierarchical structures and encouraging more
distributed forms of knowledge creation can drive innovation and efficiency [7]. By adopting Code-
as-Policy, organizations effectively flatten the policy development process, allowing for continuous
and participatory feedback loops—an approach aligned with agile governance principles [8].

2.3 Code-as-Policy vs. Policy Documentation

The Department of Defense’s extensive portfolio of instructions and directives is more than simple
"documentation." These documents establish rules, protocols, and procedures that have legal and
operational implications. "Code-as-Policy" can operate at two levels:

1. Textual Level: The actual verbiage of DoDIs and directives is stored in plain text (Markdown,
AsciiDoc, etc.) with version control.

2. Enforcement Level (Optional/Advanced): Certain policy statements are translated into
machine-readable code that can be automatically checked or enforced by policy engines (e.g.,
security configurations, data handling procedures).

While the focus of this paper is primarily on the textual level (the immediate step for policy
management), further integration with machine-enforceable policy opens powerful avenues for
compliance automation [9]. For instance, one might encode a policy on approved software libraries
into a scanning tool that rejects unapproved code. Having policy in structured, version-controlled
formats also facilitates extraction by AI systems, enabling automated analytics, semantic search,
and real-time policy updates based on changing operational contexts.

3 The Case for a Version-Controlled Code-as-Policy Model

3.1 Enhanced Transparency and Accountability

Traceability and "Blame" With a modern version control system, every single revision is linked
to its originator, timestamp, and reason for the change. This full historical lineage solves one of the
biggest challenges in traditional document-based systems: identifying precisely who changed what
and when. Such transparency is critical in an organization as large and complex as the Department
of Defense, particularly when accountability and oversight are paramount [10].

Review and Approval Branch-based (or stream-based) workflows enable formal pull/merge
requests, facilitating peer reviews and sign-offs by subject matter experts (SMEs), legal teams, and

Code-as-Policy White Paper 5 v0.1 | January 25, 2025

command leadership. This ensures that policy changes are thoroughly vetted before they become
official.

Navigability, Cross-Linking, and Issue Tracking Beyond simply tracking who changed
what, version control platforms (e.g., GitHub, GitLab, or Bitbucket) offer advanced features that
significantly enhance transparency and usability:

1. Cross-Repository References: Directives in one repository can link to related guidance in
another repository, eliminating the fragmentation caused by scattered PDFs. This interconnected
approach allows policy authors and readers to navigate from one directive to another with a
single click, ensuring that all stakeholders consistently reference the most up-to-date versions.

2. Snapshot Policy State: Each commit constitutes a permanent, timestamped "snapshot" of
the policy, enabling the Department of Defense to roll back to or audit any historical state
with precision. Legal teams, oversight bodies, and leadership can reconstruct the exact policy
environment in effect at critical decision points or incidents.

3. Commit and Pull Request History: Proposed changes (pull requests) capture the rationale,
code (or text) diffs, and reviewer comments in one place. This creates a transparent narrative
around each policy update, clarifying how wording evolved, who approved it, and why certain
revisions were made.

4. Issue Tracking and Collaboration: Instead of emailing tracked changes, participants open
"issues" to highlight ambiguities, note conflicts with other directives, or propose enhancements.
Each discussion is recorded publicly (or within a secured environment for classified policy),
providing a robust feedback loop that continuously improves policy clarity and consistency.

Together, these mechanisms transform the static nature of Department of Defense directives into
an interactive, auditable knowledge graph, where every link, comment, and change is fully visible,
reviewable, and recoverable.

3.2 Faster Iteration and Continuous Improvement

Reduction of "Version Confusion" In legacy systems, multiple versions of the same document
circulate simultaneously, often creating confusion about which version is authoritative. By using a
single authoritative "main" branch (or "trunk"), the canonical state of the policy is always clear [11].

Synchronized Local Adaptations Subordinate commands can fork or branch from the main
repository to adapt policies for local contexts without losing alignment with upstream changes. This
fosters a more agile, bottom-up approach to policy evolution.

3.3 Automation, Integration, and AI Readiness

CI/CD Pipelines Just as code changes are automatically tested, policy changes can trigger
automated builds that produce PDF, HTML, or other desired formats. Automated quality checks
(spelling, style, broken links, compliance with style guides) and security checks (e.g., scanning for
inclusion of sensitive data) can be integrated into the pipeline [12].

Code-as-Policy White Paper 6 v0.1 | January 25, 2025

Machine-Readable Extensions and AI Pipelines Future enhancements could embed metadata
and structured rules within policy text, enabling automation of compliance checks against operational
configurations (e.g., verifying that cybersecurity protocols align with NIST standards). These
structured representations are also conducive to modern AI pipelines. By parsing policy text from a
single version-controlled source, AI-driven systems can:

1. Perform natural language understanding and semantic analysis on up-to-date policy documents.
2. Provide real-time decision support by mapping policy statements to relevant operational data.
3. Flag potential ambiguities or conflicts in policy through machine learning models trained on

historical policy changes and adjudication outcomes.

Such synergy between policy text, automation, and AI is a foundational principle of DevSecOps
[13], now evolving into AI-augmented governance.

3.4 Cultural and Organizational Benefits

Empowerment of Personnel A Code-as-Policy model can democratize policy contributions,
allowing individuals at various levels to propose edits or clarifications. While final approvals remain
hierarchical, the open and transparent environment encourages a culture of continuous improvement
[14].

Breaking Down Silos Centralized repositories reduce duplication of effort across different
Department of Defense branches and units. Shared development fosters cross-domain collaboration,
ultimately enhancing uniformity and interoperability within the Department of Defense.

3.5 Long-Term Strategic Alignments

Digital Transformation Embracing modern version control in policy development aligns with
broader Department of Defense initiatives for digital modernization, in which the organization must
continuously adapt to the swiftly changing threat landscape and technological environment [15].

Future-Proofing Plaintext-based policy stores and open file formats mitigate issues related
to vendor lock-in or obsolescence. They also scale seamlessly as the volume and complexity of
policy artifacts grow. Moreover, having policy in standardized markup formats will facilitate future
transitions to advanced AI systems that ingest, interpret, and enforce policy at scale.

4 Potential Challenges and Mitigation Strategies

4.1 Cultural Resistance and Change Management

Challenge Department of Defense personnel may be accustomed to Word-PDF workflows and
might see version control systems (especially Git) as overly technical or unfamiliar. Additionally,
the hierarchical structure and entrenched workflows within the Department of Defense can create
significant barriers to adopting new methodologies.

Mitigation — Comprehensive Change Management

Code-as-Policy White Paper 7 v0.1 | January 25, 2025

1. Incentivization Metrics: Develop metrics that reward departments and individuals for adopting
and effectively using the CaP model. This could include recognition programs, performance
evaluations, and linking adoption to professional development opportunities.

2. Resistance from Mid-Level Leadership: Engage mid-level leaders through targeted training
and demonstrate the tangible benefits of CaP. Establish champions within these leadership tiers
to advocate for the transition and address concerns.

3. Structured Training Programs: Implement ongoing training initiatives tailored to different
roles within the DoD. Provide hands-on workshops, online tutorials, and support resources to
ease the transition.

4. Pilot Programs: Launch pilot programs within progressive divisions to showcase the effectiveness
of the CaP model. Use success stories from these pilots to build momentum and encourage
broader adoption across the organization.

Mitigation — Automated Multi-Format Publishing With a Code-as-Policy approach,
continuous integration/continuous deployment (CI/CD) pipelines can automatically generate policy
artifacts in multiple outputs—PDF, static websites, Word documents, and more—from a single
canonical source. This lets Department of Defense personnel continue using familiar PDF or Word
formats, while also making policy updates available on internal portals or statically generated
websites. The result is consistent formatting, fewer manual conversion errors, and faster propagation
of approved changes.

4.2 Security and Classification

Challenge Some policy documents contain sensitive or classified information, posing significant
risks if version control repositories are not properly secured.

Mitigation — Deeper Security Measures

1. Secure Hosting: Host repositories on Department of Defense-accredited platforms (e.g., a
private GitLab or Perforce instance within a secure enclave).

2. Access Controls: Implement robust role-based permissions and multi-factor authentication,
ensuring only authorized personnel can view or modify sensitive content.

3. Encryption and Zero-Trust Principles: Encrypt data both at rest and in transit. Employ
zero-trust network architecture to continuously verify user and service identities [17].

4. Segmentation: Partition classified and unclassified policies into separate repositories, ensuring
that the highest levels of classification remain insulated.

4.3 Governance, Compliance, and Legal Considerations

Challenge The formal policy approval process in the Department of Defense can be bureau-
cratic. Ensuring that version-controlled changes comply with existing legal frameworks and records
management is crucial.

Mitigation — Enhanced Governance and Compliance Framework

Code-as-Policy White Paper 8 v0.1 | January 25, 2025

1. Customized Pull Request Flow: Automate a final approval step requiring sign-off from legal
counsel, records management officers, and commanding officers. This ensures that all policy
changes undergo necessary legal and compliance reviews before being merged.

2. Extended Metadata: Embed classification labels, Freedom of Information Act (FOIA) dis-
claimers, and revision reasons directly in policy files. Automated scripts can enforce the presence
of mandatory metadata, ensuring compliance with Department of Defense Instruction (DoDI)
5015.02 on records management [18].

3. Integration with Official Records Management Systems: Use APIs to synchronize
approved policy states with systems that comply with DoDI 5015.02. This ensures that all policy
documents are properly archived and retrievable in accordance with federal records management
standards.

4. Legal Precedents for Metadata-Enforced Compliance: Reference legal frameworks and
precedents that support the use of metadata for enforcing compliance. This includes citing cases
where metadata has been effectively used to track and enforce policy adherence.

These strategies not only ensure compliance with existing legal and governance frameworks but also
enhance the credibility and reliability of the CaP model within the Department of Defense.

4.4 Scalability Across a Large Organization

Challenge The Department of Defense’s massive structure spans multiple military departments,
combatant commands, and agencies. Achieving uniform adoption is difficult when each entity has
distinct requirements.

Mitigation — Managing Decentralization

1. Tiered Rollout Strategy: Start with smaller commands or specialized working groups (e.g.,
software factories) to pilot the approach. Gradually expand to larger and more diverse commands,
incorporating lessons learned and best practices from initial rollouts.

2. Centralized Governance, Decentralized Execution: Maintain a core "main" repository
that sets overarching policy. Allow each department to maintain branches or forks for local
adaptations, reconciling changes upstream through scheduled merges.

3. Shared Best Practices Repository: Create a knowledge base of reusable workflows, training
materials, and scripts that can be adapted across different branches of the Department of Defense.
This repository serves as a centralized resource to standardize practices and facilitate efficient
scaling.

Mitigation — Feasibility Analysis and Pilot Program Metrics Conduct a thorough
feasibility analysis to address scalability challenges unique to the Department of Defense’s size and
complexity. This includes:

1. Integration with Classified Networks: Develop strategies for integrating CaP with secure
networks like SIPRNet, ensuring that classified policies are managed with the highest security
standards.

2. Resource Investments: Outline the necessary personnel, infrastructure, and training resources

Code-as-Policy White Paper 9 v0.1 | January 25, 2025

required for a successful rollout. This includes identifying key roles, budgeting for infrastructure
upgrades, and allocating time for training programs.

3. Cost-Benefit Analysis: Perform a cost-benefit analysis to demonstrate the financial and
operational advantages of adopting the CaP model. Highlight potential savings from reduced
document management inefficiencies and improved policy agility.

4. Pilot Program Metrics: Establish metrics to evaluate the success of pilot programs, such as
adoption rates, user satisfaction, reduction in policy update times, and compliance levels. Use
these metrics to guide iterative improvements and inform broader deployment strategies.

4.5 Technical Infrastructure and Interoperability

Challenge Many Department of Defense components rely on legacy systems like SharePoint or
specialized intranets, complicating integration.

Mitigation — Hybrid Models and APIs

1. API Bridges and Webhooks: Develop bridging software that syncs version-controlled doc-
uments with SharePoint libraries, ensuring that end-users see the latest "published" policy
versions.

2. Document Synchronization Pipelines: Automate PDF or HTML generation from the
repository, then push these artifacts to existing intranets or portals [19].

3. Embrace Hybrid Solutions: Some Department of Defense components might initially require
a partial Docs-as-Code approach, retaining certain Word/PDF workflows where absolutely
necessary while still benefiting from version control on critical policy text.

4.6 User-Centric Design and Accessibility for Non-Technical Stakeholders

The successful adoption of the Code-as-Policy model requires engagement not only from technical
and policy-making personnel but also from a broader audience, including non-technical staff who
interact with policies daily. Many of these users may be unfamiliar with version control systems or
the underlying methodologies that support the CaP framework. Without adequate consideration
for their needs, the initiative risks creating barriers that could hinder widespread adoption and
effectiveness.

4.6.1 Challenges for Non-Technical Stakeholders

1. Steep Learning Curve: Traditional workflows involving Word and PDF documents are
deeply ingrained, and transitioning to version-controlled repositories may appear daunting for
non-technical users.

2. Complex Interfaces: Tools like Git and associated platforms (e.g., GitHub, GitLab) are
designed primarily for developers, which can make navigation and interaction overwhelming for
non-technical users.

3. Role-Specific Needs: Non-technical roles such as administrative staff, compliance officers,
and field personnel may require tailored workflows that differ significantly from those used by
developers or policymakers.

Code-as-Policy White Paper 10 v0.1 | January 25, 2025

4.6.2 Proposed Mitigation Strategies

1. User-Friendly Interfaces:
• Develop or integrate graphical user interfaces (GUIs) tailored to non-technical users. These

interfaces should simplify complex actions such as version navigation, pull requests, and branch
management into intuitive, guided workflows.

• Example: A web-based portal that abstracts the technical details of version control while
providing clear options for document review, commenting, and approvals.

2. Simplified Workflows:
• Implement templates and automated scripts to reduce manual effort for repetitive tasks. For

instance, policy review workflows could be streamlined to allow users to approve changes via
email links or web forms without interacting directly with a version control platform.

• Pre-configure commonly used actions (e.g., creating new branches for local adaptations) to
reduce decision fatigue and errors.

3. Comprehensive Training Programs:
• Develop tailored training modules for non-technical users that focus on practical, role-specific

applications of the CaP model. These modules should:
– Use non-technical language and relatable examples.
– Include hands-on demonstrations of user-friendly interfaces.
– Provide ongoing support through help desks or dedicated training personnel.

• Incentivize participation in training programs by linking them to professional development
credits or recognition awards.

4. Accessible Documentation:
• Create clear, jargon-free documentation that explains the system’s purpose, workflows, and

benefits. Ensure that this documentation is easily accessible in various formats, including
video tutorials and FAQs.

• Example: Interactive user guides embedded within the policy platform to offer real-time
assistance.

5. Feedback Loops:
• Actively solicit feedback from non-technical users to refine interfaces, workflows, and training

programs. Establish a mechanism for continuous improvement based on their experiences and
challenges.

• Example: Regular surveys or user experience workshops to identify pain points and address
them iteratively.

4.6.3 Anticipated Benefits

1. Broader Adoption: Lowering the entry barrier for non-technical users ensures that the CaP
model is embraced across all levels of the organization, maximizing its impact.

2. Enhanced Collaboration: Simplified workflows and interfaces foster collaboration between
technical and non-technical stakeholders, creating a more inclusive policy development process.

Code-as-Policy White Paper 11 v0.1 | January 25, 2025

3. Improved Compliance: By making the version-controlled repositories accessible and under-
standable to a wider audience, the organization can ensure consistent compliance with directives
across all operational areas.

By prioritizing user-centric design and accessibility, the Code-as-Policy initiative can achieve greater
inclusivity and adoption. Tailoring tools, workflows, and training to non-technical stakeholders
ensures that the benefits of the CaP model are realized across the entire Department of Defense
enterprise.

4.7 AI Risks and Mitigations

Artificial intelligence (AI) and machine learning hold transformative potential for policy management
within the Department of Defense. However, their implementation must address key risks to ensure
responsible and effective use.

4.7.1 Ethical Risks

1. Bias in AI-Generated Policies: AI systems trained on historical data may inadvertently
perpetuate existing biases, resulting in unfair, unrealistic, inefficient or detrimental policy
outcomes.

2. Opacity of Decision-Making: AI-driven processes can lack transparency, making it difficult
to discern how policy recommendations are derived and reducing trust in automated decisions.

4.7.2 Technical Constraints

1. NLP Accuracy: Natural Language Processing (NLP) tools may misinterpret the complexity
and nuance of policy language, leading to errors in automated analyses.

2. Data Quality Dependence: AI systems require comprehensive, well-structured data. Incom-
plete or inconsistent data inputs can undermine the reliability of AI-generated insights.

4.7.3 Mitigation Strategies

1. Bias Mitigation: Utilize diverse training datasets and implement techniques to identify and
reduce bias in AI models.

2. Explainable AI: Adopt AI models that provide transparent decision-making processes, enabling
policymakers to understand and trust AI-generated recommendations.

3. Continuous Validation: Regularly evaluate AI tools against real-world policy scenarios to
ensure their accuracy and reliability.

4. Robust Data Governance: Establish stringent data management practices to maintain the
quality, consistency, and completeness of data inputs for AI systems.

Additionally, forming an AI Ethics Board within the Department of Defense can oversee the
development and deployment of AI tools, ensuring they adhere to ethical standards and organizational
values.

Code-as-Policy White Paper 12 v0.1 | January 25, 2025

4.8 Long-Term Strategic Alignments

Digital Transformation Embracing modern version control in policy development aligns with
broader Department of Defense initiatives for digital modernization, in which the organization must
continuously adapt to the swiftly changing threat landscape and technological environment [15].

Future-Proofing Plaintext-based policy stores and open file formats mitigate issues related
to vendor lock-in or obsolescence. They also scale seamlessly as the volume and complexity of
policy artifacts grow. Moreover, having policy in standardized markup formats will facilitate future
transitions to advanced AI systems that ingest, interpret, and enforce policy at scale.

5 Modernization Initiatives and the Code-as-Policy Framework
Transitioning from theoretical foundations to practical implementation, it is essential to contextual-
ize the Code-as-Policy model within the Department of Defense’s broader modernization efforts.
Initiatives such as Joint All-Domain Command and Control (JADC2) and the adoption of Zero Trust
architectures underscore the necessity for agile, scalable, and secure policy management systems.
The CaP framework aligns seamlessly with these initiatives by providing a robust, version-controlled
approach to policy development that supports real-time adaptability and comprehensive integration
across various domains.
JADC2 emphasizes the integration and synchronization of data across all domains-air, land, sea,
space, and cyber-to achieve a unified operational picture. The CaP model complements this by
ensuring that policy documents are consistently updated, easily accessible, and seamlessly integrated
into operational workflows. Similarly, Zero Trust architectures, which operate on the principle of
"never trust, always verify," benefit from the granular access controls and auditability inherent in
version-controlled policy repositories.
By embedding the CaP framework within these modernization initiatives, the Department of Defense
can enhance its operational readiness, ensure policy compliance across all domains, and foster a
culture of continuous improvement and innovation.

6 Implementation Framework
Implementing the Code-as-Policy paradigm within the Department of Defense necessitates a struc-
tured and strategic approach. The Implementation Framework delineates the phased rollout,
governance model, training and change management, and supporting tools and automations essen-
tial for a successful transition. This section provides a comprehensive roadmap, addressing both
technical and organizational facets to ensure scalability, security, and sustained adoption across the
Department of Defense.

6.1 Phased Rollout

A phased rollout strategy is paramount to manage the complexity and scale of the Department of
Defense’s policy infrastructure. This approach minimizes risks, allows for continuous learning, and
facilitates stakeholder buy-in at each stage.

1. Pilot Phase:

Code-as-Policy White Paper 13 v0.1 | January 25, 2025

• Selection of Flagship Policy: Identify a flagship Department of Defense Instruction (DoDI)
for initial conversion to the CaP model. Criteria for selection should include the policy’s
strategic importance, frequency of updates, and potential for cross-departmental impact.

• Formation of a Cross-Functional Team: Assemble a small, diverse team comprising policy
experts, software engineers, DevSecOps practitioners, and change management specialists.
This team will spearhead the pilot, develop best practices, configure necessary tools, and
create initial training modules.

• Development of Best Practices and Tool Configurations: Establish standardized
procedures for policy conversion, including version control workflows, branching strategies,
and code review protocols. Configure tools such as Git repositories, CI/CD pipelines, and
automated validation scripts tailored to the Department of Defense’s requirements.

• Initial Training and Documentation: Develop comprehensive training materials and
conduct workshops to familiarize the pilot team with the CaP tools and methodologies.
Documentation should cover repository management, pull request workflows, and security
protocols.

• Evaluation and Feedback Collection: Monitor the pilot’s progress, gather feedback from
team members, and identify challenges. Use these insights to refine processes and tools before
scaling.

2. Limited Production:
• Expansion to Related Policies: Gradually extend the CaP model to a limited set of related

policies within the same domain or operational area. This ensures consistency and leverages
lessons learned from the pilot phase.

• Integration of Lessons Learned: Incorporate feedback and refine best practices based on
pilot outcomes. Address any identified gaps in tooling, training, or governance.

• Enhanced Documentation and Support: Expand training materials to accommodate
the broader set of policies and provide additional support resources, such as help desks or
dedicated support teams, to assist new adopters.

• Stakeholder Engagement and Communication: Maintain transparent communication
with all stakeholders, highlighting successes and addressing concerns. Use pilot successes to
build momentum and demonstrate the tangible benefits of the CaP model.

3. Full Deployment:
• Department-Wide Rollout: Deploy the CaP model across the entire Department of Defense,

encompassing all relevant policies and directives. Ensure that the rollout is adaptable to the
diverse requirements of various commands, branches, and agencies within the Department of
Defense.

• Formalized Training Programs: Implement comprehensive, department-wide training
initiatives tailored to different roles, including policy authors, reviewers, approvers, and
technical support staff. Utilize blended learning approaches combining in-person workshops,
online modules, and hands-on labs.

• Establishment of Governance Frameworks: Develop and enforce governance policies that
oversee repository management, access controls, compliance standards, and audit procedures.
This ensures consistency, security, and accountability across all policy repositories.

Code-as-Policy White Paper 14 v0.1 | January 25, 2025

• Continuous Improvement and Iterative Refinement: Establish mechanisms for ongoing
evaluation and improvement of the CaP model. Solicit regular feedback, conduct periodic
reviews, and adapt processes to evolving needs and technological advancements.

• Scalability and Resource Allocation: Ensure that sufficient resources-both human and
technological-are allocated to support the full deployment. This includes scaling infrastructure,
expanding support teams, and maintaining robust CI/CD pipelines to handle increased policy
volumes.

6.2 Governance Model

A robust governance model is essential to manage the complexities of policy creation, maintenance,
and enforcement within a version-controlled environment. The governance model ensures that
policies remain consistent, compliant, and aligned with organizational objectives while facilitating
collaboration across diverse departments.

1. Authoritative “Main” Branch:
• Centralized Management: The main branch serves as the single source of truth for all

official policies. It is managed by a central policy office responsible for final approvals and
overarching governance.

• Strict Access Controls: Implement role-based access controls to restrict write permissions
to authorized personnel, ensuring that only vetted changes are incorporated into the main
branch.

• Change Management Protocols: Establish formal procedures for proposing, reviewing, and
merging changes. This includes mandatory code reviews, approval workflows, and automated
compliance checks.

2. Review Committees:
• Composition: Assemble committees comprising Subject Matter Experts (SMEs), legal

counsel, senior leadership, and representatives from relevant departments. These committees
are responsible for reviewing and approving proposed policy changes.

• Structured Review Processes: Define clear guidelines for review timelines, feedback
mechanisms, and decision-making authority. Utilize pull requests and merge requests to
facilitate transparent and traceable reviews.

• Accountability and Oversight: Ensure that all changes are thoroughly vetted for legal
compliance, operational relevance, and strategic alignment before integration into the main
branch.

3. Subordinate Branches or Forks:
• Decentralized Adaptations: Allow each command or department to maintain their own

branches or forks to handle local adaptations of policies. This decentralization enables tailored
updates without disrupting the central policy framework.

• Synchronization Mechanisms: Implement scheduled merges or synchronization protocols
to incorporate upstream changes from the main branch into subordinate branches. This
ensures that local adaptations remain aligned with overarching policies.

• Conflict Resolution Strategies: Develop procedures for identifying and resolving conflicts

Code-as-Policy White Paper 15 v0.1 | January 25, 2025

between local adaptations and central policies, promoting harmony and consistency across the
organization.

4. CODEOWNERS Business Rules:
• Designation of Policy Owners: Utilize "CODEOWNERS" files within the version-controlled

repositories to assign specific teams or individuals as owners of distinct policy sections. This
designation ensures clear accountability and streamlines the update process.

• Asynchronous Updates and Coordination: By assigning ownership at the section level,
different offices can manage and update their respective policy sections independently. This
facilitates asynchronous updates, reducing bottlenecks and enhancing agility while maintaining
overall coordination.

• Integration with Access Controls: Combine "CODEOWNERS" with access control
mechanisms to enforce that only designated owners can approve changes to their respective
sections. This integration enhances security and ensures that updates are reviewed by the
appropriate stakeholders.

• Facilitating Cross-Departmental Collaboration: Sections of policy that intersect multiple
departments can have multiple owners or require joint approvals, ensuring comprehensive
review and fostering collaborative governance. For instance, a cybersecurity policy section
might be co-owned by the Cyber Operations Office and the Information Assurance Office,
necessitating approval from both before changes are merged.

6.3 Training and Change Management

Successful adoption of the CaP model hinges on effective training and change management strategies.
These initiatives ensure that personnel are adequately prepared to transition to new workflows and
embrace the cultural shift towards collaborative policy management.

1. Comprehensive Training Programs:
• Role-Based Training: Develop tailored training modules for different roles, including policy

authors, reviewers, approvers, and technical support staff. Each module should focus on the
specific responsibilities and workflows pertinent to the role.

• Hands-On Workshops and Simulations: Conduct interactive workshops and simulation
exercises to provide practical experience with version control systems, pull request workflows,
and policy repository management.

• Ongoing Support and Resources: Establish a repository of training materials, including
tutorials, FAQs, and best practice guides. Provide continuous support through help desks,
mentorship programs, and dedicated training personnel.

2. Cultural Onboarding:
• Promoting a Collaborative Mindset: Emphasize the value of transparency, accountability,

and continuous improvement. Highlight success stories and demonstrate how the CaP model
enhances operational efficiency and policy agility.

• Leadership Endorsement and Advocacy: Engage senior leadership to champion the
CaP initiative, fostering a top-down endorsement that encourages widespread adoption and
mitigates resistance.

Code-as-Policy White Paper 16 v0.1 | January 25, 2025

• Change Management Frameworks: Implement structured change management method-
ologies, such as Kotter’s 8-Step Change Model or the ADKAR model, to guide the organization
through the transition. This includes creating a sense of urgency, building a guiding coalition,
and reinforcing new behaviors.

3. Incentivization and Recognition:
• Incentivization Metrics: Develop metrics that reward departments and individuals for

adopting and effectively utilizing the CaP model. Metrics could include the number of successful
policy updates, adherence to best practices, and contributions to shared repositories.

• Recognition Programs: Establish recognition programs that acknowledge and celebrate
exemplary contributions to the CaP initiative. This could include awards, public acknowledg-
ments, and professional development opportunities.

• Linking to Performance Evaluations: Integrate CaP adoption and performance into
official performance evaluations, ensuring that contributions to the initiative are valued and
incentivized at all organizational levels.

4. Pilot Programs and Feedback Loops:
• Initial Pilot Programs: Launch pilot programs within progressive divisions or specialized

working groups to showcase the effectiveness of the CaP model. Use these pilots to gather
insights, refine processes, and build a repository of best practices.

• Iterative Feedback Mechanisms: Implement continuous feedback loops to collect input
from users, identify pain points, and make iterative improvements. This could involve regular
surveys, user experience workshops, and dedicated feedback channels.

• Scaling Success Stories: Leverage the successes and lessons learned from pilot programs
to inform broader deployment strategies. Highlight tangible benefits, such as reduced policy
update times and improved collaboration, to encourage adoption across the organization.

6.4 Supporting Tools and Automations

Leveraging modern tools and automations is critical to operationalizing the CaP model. These
technologies streamline workflows, enforce compliance, and enhance the efficiency and reliability of
policy management processes.

1. Integrated CI/CD Pipelines:
• Automated Builds and Deployments: Implement Continuous Integration/Continuous

Deployment (CI/CD) pipelines to automate the building, testing, and deployment of policy
documents. This ensures that changes are consistently integrated and deployed with minimal
manual intervention.

• Policy Linting and Formatting Checks: Incorporate automated linting and formatting
tools to enforce consistency and adherence to predefined style guides. This reduces errors and
ensures uniformity across all policy documents.

• Automated PDF/HTML Generation: Configure pipelines to automatically generate
multiple output formats, such as PDF and HTML, from the source repository. This facilitates
easier distribution and access to policies in various formats.

2. Metadata and Compliance Checks:

Code-as-Policy White Paper 17 v0.1 | January 25, 2025

• Embedding Metadata: Integrate metadata fields within policy files to capture essential
information such as classification levels, revision history, and compliance requirements. This
metadata aids in automated compliance checks and ensures that policies adhere to Department
of Defense standards.

• Automated Compliance Enforcement: Utilize scripts and tools to automatically verify
that all policy documents meet compliance criteria before they are merged into the main
branch. This includes checks for mandatory sections, proper classification labels, and adherence
to formatting standards.

3. Dashboards and Monitoring Tools:
• Real-Time Dashboards: Develop dashboards that visualize key metrics such as open merge

requests, pending approvals, and policy coverage across commands. These dashboards provide
leadership with a comprehensive overview of the CaP implementation status.

• Compliance Status Indicators: Implement visual indicators that display the real-time
compliance status of policies, highlighting areas that require attention or are pending review.

• Automated Alerts and Notifications: Configure alerting mechanisms to notify relevant
stakeholders of important events, such as policy updates, failed compliance checks, or upcoming
deadlines. This ensures timely action and maintains the momentum of the CaP initiative.

4. Security Integrations:
• Secure Repository Hosting: Host policy repositories on secure, Department of Defense-

accredited platforms that comply with stringent security standards. This includes using
private instances of GitLab, GitHub Enterprise, or other approved version control systems.

• Role-Based Access Controls (RBAC): Implement RBAC to ensure that only authorized
personnel can access, modify, or approve policy documents. This minimizes the risk of
unauthorized changes and maintains the integrity of policies.

• Continuous Security Audits: Integrate security audit tools into the CI/CD pipelines to
continuously monitor and assess the security posture of policy repositories. This includes
scanning for vulnerabilities, enforcing encryption standards, and ensuring compliance with
Zero Trust principles.

7 From Theory to Practice: Azure DevOps for Code-as-Policy
In line with the Code-as-Policy model, this whitepaper itself has been developed using a structured
and automated workflow facilitated by Azure DevOps. This approach ensures that the document
remains version-controlled, auditable, and consistently formatted, embodying the principles it
advocates for. This section outlines the infrastructure and processes employed to build, validate,
and deploy this whitepaper, demonstrating the practical application of the CaP model.
Figure 1 illustrates the end-to-end Azure DevOps pipeline configured to build, validate, and deploy
the whitepaper. Each stage is interconnected, ensuring seamless transitions from code commits to
final deployment, while integrating both automated and manual approval gates to maintain quality
and compliance. Detailed technical configurations and scripts are provided in Appendix 12.

Code-as-Policy White Paper 18 v0.1 | January 25, 2025

Figure 1: Code-as-Policy Azure DevOps Pipeline Workflow

Code-as-Policy White Paper 19 v0.1 | January 25, 2025

7.1 Repository Management

At the heart of our automated workflow is a dedicated Azure DevOps repository that houses all the
source files necessary for the whitepaper’s development. The repository structure is organized to
maintain clarity and efficiency:

• Root Directory: Contains the main LaTeX file (‘CodeAsPolicy.tex‘), ‘.gitignore‘, ‘README.md‘,
‘azure-pipelines.yml‘, and ‘azure-pipelines-1.yml‘.

• Subdirectories:
– ‘images/‘: Stores all diagrams and figures referenced in the whitepaper.
– ‘references/‘: Holds bibliography files and citation databases.

7.2 .gitignore Configuration

To maintain a clean repository, a ‘.gitignore‘ file is configured to exclude extraneous files generated
during the LaTeX build process. The following ‘.gitignore‘ rules are applied:

1 # LaTeX build and auxiliary files
2 *.aux
3 *.fdb_latexmk
4 *.fls
5 *.log
6 *.out
7 *.synctex.gz
8 *.toc
9

10 # Ignore PDF files in the root directory
11 /*.pdf
12

13 # Allow PDF files in all subdirectories
14 !**/*.pdf
15

This configuration ensures that only essential source files are tracked, while build artifacts like ‘.aux‘,
‘.log‘, and root-level PDFs are ignored. PDFs generated within subdirectories (e.g., ‘build/output.pdf‘)
are preserved for deployment purposes.

7.3 README.md: Onboarding and Documentation

The ‘README.md‘ file serves as the primary entry point for contributors and stakeholders, providing
an overview of the project, setup instructions, and guidelines for collaboration. Key components
include:

• Project Description: Brief summary of the whitepaper’s purpose and objectives.
• Getting Started: Instructions on how to clone the repository, install dependencies, and build the

document locally.
• Contribution Guidelines: Best practices for submitting changes, including branching strategies,

pull request protocols, and review processes.
• Licensing Information: Details about the project’s licensing terms.

Code-as-Policy White Paper 20 v0.1 | January 25, 2025

• Author Information: Contact details and professional background of the author(s).

This structured documentation ensures that new contributors can quickly become productive and
understand the workflow established within the repository.

7.4 Automated Build Pipeline

Azure DevOps pipelines are configured to automate the build and validation processes, ensuring that
every commit is systematically processed and validated. The pipeline is divided into two primary
stages: **Build** and **Validation**.

7.4.1 Build Stage

The Build stage is responsible for compiling the LaTeX source files into a PDF document. It includes
the following steps, outlined in Appendix 12.1.1:

1. Caching LaTeX Installation: Utilizes Azure DevOps’ caching mechanism to store the LaTeX
installation, significantly reducing build times for subsequent runs.

2. Installing Minimal LaTeX: Installs only the necessary LaTeX packages required for building
the whitepaper, optimizing storage and build times.

3. Compiling LaTeX Document: Uses ‘latexmk‘ to automate the multi-pass compilation process,
generating a PDF in the designated ‘output‘ directory.

4. Publishing PDF as Artifact: The generated PDF is published as a pipeline artifact named
‘PDF‘, making it available for subsequent stages.

7.4.2 Validation Stage

The Validation stage performs a series of automated checks to ensure the integrity and compliance of
the whitepaper before deployment. It comprises two jobs: AutomatedChecks and ManualApproval.

Automated Checks Job This job executes a series of scripts to verify the presence of critical
sections within the LaTeX source file, ensuring that the document adheres to the expected structure
and content standards. Additionally, it integrates AI-based analysis to assess the document’s
correctness, coherence, and adherence to professional standards.

1. Section Validations:
• Table of Contents:

1 - script: |
2 if grep -q '\\tableofcontents' $(System.DefaultWorkingDirectory)/$(TEX_FILE);

then
3 echo "Table of Contents found."
4 else
5 echo "Error: Table of Contents not found."
6 exit 1
7 fi
8 displayName: "Check for Table of Contents"
9

Code-as-Policy White Paper 21 v0.1 | January 25, 2025

• Abstract Section:

1 - script: |
2 if grep -q '\\section*\s*{Abstract}' $(System.DefaultWorkingDirectory)/$(

TEX_FILE); then
3 echo "Abstract section found."
4 else
5 echo "Error: Abstract section not found."
6 exit 1
7 fi
8 displayName: "Check for Abstract Section"
9

• Title Section:

1 - script: |
2 if grep -q '\\title{' $(System.DefaultWorkingDirectory)/$(TEX_FILE); then
3 echo "Title section found."
4 else
5 echo "Error: Title section not found."
6 exit 1
7 fi
8 displayName: "Check for Title Section"
9

• References/Bibliography Section:

1 - script: |
2 if grep -q '\\bibliography{' $(System.DefaultWorkingDirectory)/$(TEX_FILE);

then
3 echo "References/Bibliography section found."
4 else
5 echo "Error: References/Bibliography section not found."
6 exit 1
7 fi
8 displayName: "Check for References/Bibliography Section"
9

• Conclusion Section:

1 - script: |
2 if grep -q '\\section{Recommendations}\label{recommendations}
3

4 \begin{enumerate}
5 \item \textbf{Establish Code-as-Policy as the default for policy change} by

requiring all new and revised policies to have a canonical repository, a
change log, and pull-request review.

6 \item \textbf{Instrument policy with testable controls} (linters, schema checks
, and automated compliance assertions) so policy quality is enforced
continuously, not at publication time.

Code-as-Policy White Paper 22 v0.1 | January 25, 2025

7 \item \textbf{Adopt a paved road for policy delivery} (templates, CI pipelines,
and approval workflows) to reduce friction and make the secure path the easy
path.

8 \item \textbf{Define governance boundaries} (who can approve what, escalation
paths, and audit requirements) so speed increases without sacrificing
accountability.

9 \item \textbf{Pilot with one high-churn policy family in 60 days} and measure
cycle time, defect rate, and adoption across stakeholders.

10 \end{enumerate}
11

12 \section{Conclusion}' $(System.DefaultWorkingDirectory)/$(TEX_FILE); then
13 echo "Conclusion section found."
14 else
15 echo "Error: Conclusion section not found."
16 exit 1
17 fi
18 displayName: "Check for Conclusion Section"
19

2. AI-Based Validation:
• Integrates the OpenAI API to analyze the PDF for correctness, coherence, and adherence to

predefined standards.
• This step uses a custom Python script to interact with OpenAI’s services, which assigns a pass

or fail rating based on the analysis results. An Azure Function or other serverless architecture
could also be employed to host this functionality if needed.

• The below task calls the AI-based analysis script as part of the pipeline:

1 - task: Bash@3
2 displayName: "AI-Based PDF Analysis with OpenAI"
3 inputs:
4 targetType: 'inline'
5 script: |
6 python analyze_ai.py --pdf $(System.DefaultWorkingDirectory)/output/

CodeAsPolicy.pdf
7 continueOnError: false # Fail if non-zero code
8

Manual Approval Deployment Job This deployment job is associated with the ‘Production‘
environment in Azure DevOps, configured with manual approval gates. Upon passing all automated
checks, the pipeline pauses here, awaiting human approval before proceeding to deployment.

1 - deployment: ManualApproval
2 displayName: "Manual Approval Deployment"
3 dependsOn: AutomatedChecks
4 environment: 'Production' # Use the environment created in Azure DevOps
5 strategy:
6 runOnce:
7 deploy:

Code-as-Policy White Paper 23 v0.1 | January 25, 2025

8 steps:
9 - script: echo "Awaiting manual approval..."

10 displayName: "Manual Approval Placeholder"
11

This structure ensures that policy deployments undergo thorough scrutiny, combining automated
integrity checks with human oversight to maintain the highest standards of quality and compliance.

7.5 Deployment Pipeline

The final stage of the pipeline involves deploying the validated PDF to a designated Azure Blob
Storage container, making it accessible to authorized stakeholders.

1. Download PDF Artifact:
• Retrieves the published PDF artifact from the Build stage.

2. Upload to Azure Blob Storage:
• Utilizes the ‘AzureCLI‘ task to upload the PDF to the specified Azure Blob Storage container.
• Ensures secure handling of connection strings and credentials through Azure DevOps’ secure

variables.

1 - stage: Deploy
2 displayName: "Deploy PDF"
3 dependsOn: Validation
4 jobs:
5 - job: DeployJob
6 displayName: "Deploy PDF to Azure Blob Storage"
7 steps:
8 # Download the PDF Artifact
9 - task: DownloadPipelineArtifact@2

10 displayName: "Download PDF Artifact"
11 inputs:
12 artifact: "PDF"
13 path: "$(System.DefaultWorkingDirectory)/downloaded_pdf"
14

15 # Debugging step to list files
16 - script: |
17 echo "Listing contents of the downloaded_pdf directory:"
18 ls -R $(System.DefaultWorkingDirectory)/downloaded_pdf
19 displayName: "Debug: Verify Downloaded Artifacts"
20

21 # Deploy to Azure Blob Storage
22 - task: AzureCLI@2
23 displayName: "Upload PDF to Azure Blob Storage"
24 inputs:
25 azureSubscription: "AzureBlobConnection"
26 scriptType: 'bash'
27 scriptLocation: 'inlineScript'
28 inlineScript: |
29 az storage blob upload \

Code-as-Policy White Paper 24 v0.1 | January 25, 2025

30 --account-name $(DEPLOY_STORAGE_ACCOUNT) \
31 --container-name $(DEPLOY_CONTAINER) \
32 --name CodeAsPolicyFromPDFstoPullRequests.pdf \
33 --file $(System.DefaultWorkingDirectory)/downloaded_pdf/

CodeAsPolicyFromPDFstoPullRequests.pdf \
34 --connection-string "$(DEPLOY_CONNECTION_STRING)"
35

Note: For the policy contributor to ensure that the ‘CodeAsPolicy.pdf‘ filename matches the actual
generated PDF name in the build process, the debugging step is added to view file paths and names
in the logs more easily.

8 Broader Impact, Real-World Examples, and Future Research

8.1 Digital Bureaucracy and Agile Governance

By flattening the hierarchy of policy creation, the Department of Defense can evolve into a more agile
bureaucracy that swiftly adapts to changing geopolitical and technological landscapes. Real-time
policy updates can be tested, audited, and merged in days or weeks instead of months or years,
accelerating the Department of Defense’s responsiveness.

8.1.1 Real-World Implementations in Government Contexts

1. NASA (Internal Documentation): Transitioned portions of mission documentation to Docs-
as-Code, reducing errors in final documents and improving collaboration across departments.

2. UK Government Digital Service (GDS): Migrated web guidance and policy content to
Git-based platforms, decreasing publication time by an order of magnitude and improving version
traceability.

3. Estonia’s e-Government Infrastructure: Though not purely Git-based, Estonia relies
heavily on automated, version-controlled processes for e-services, showcasing how digital policy
management can enhance service delivery at scale.

8.2 AI-Augmented Policy and Decision Support

Structured policy repositories are a natural fit for AI and machine learning tools. By leveraging
these technologies, the Department of Defense can transform policy management into a dynamic,
adaptive process that integrates real-time insights and predictive capabilities. This subsection
explores key applications of AI in augmenting policy and decision support:

1. Semantic Linking and Knowledge Graphs: AI algorithms can construct knowledge graphs
that interlink policy topics, directives, and relevant operational data, creating a rich, intercon-
nected repository of information. These graphs enable:
• Context-Rich Decision Support: By connecting policy provisions with real-time data sources,

such as intelligence feeds or operational metrics, decision-makers gain deeper insights into how
policies influence and are influenced by ongoing events.

• Streamlined Information Retrieval: Knowledge graphs allow users to navigate from a high-
level policy directive to specific operational guidelines or historical precedents, significantly

Code-as-Policy White Paper 25 v0.1 | January 25, 2025

improving situational awareness and reducing time spent searching for information.
2. Automated Compliance Monitoring: Intelligent agents embedded within the policy reposi-

tories can continuously monitor systems and processes for compliance with established directives.
These agents can:
• Real-Time Alerts: Automatically flag non-compliant configurations, such as deviations from

cybersecurity protocols or data handling requirements, enabling swift corrective actions.
• Dynamic Policy Updates: Detect emerging risks or changes in mission requirements and

suggest updates to relevant policies, ensuring that guidance remains aligned with current
needs.

• Historical Audits: Provide detailed records of compliance over time, aiding in accountability
and transparency during reviews or investigations.

3. Predictive Impact Analyses: Leveraging machine learning models, predictive analytics can
assess the potential outcomes and unintended consequences of proposed policy changes. This
capability can:
• Risk Assessment: Highlight areas of potential vulnerability or conflict before a policy is

implemented, allowing for preemptive mitigation strategies.
• Scenario Simulation: Model various operational scenarios under different policy conditions,

giving decision-makers a data-driven basis for selecting the most effective course of action.
• Learning from Historical Data: Use past policy outcomes to refine models, improving the

accuracy and relevance of predictions over time.
4. Policy Recommendation Systems: Advanced AI systems, such as large language models and

natural language processing tools, can assist policymakers by:
• Drafting Policy Language: Generating initial drafts based on provided objectives and con-

straints, which can then be reviewed and refined by human experts.
• Identifying Gaps: Analyzing the policy repository to detect inconsistencies, redundancies, or

omissions, ensuring a more cohesive and comprehensive policy framework.
• Proposing Alternatives: Suggesting alternative approaches based on historical data, industry

best practices, or simulated outcomes.
5. Adaptive Threat Intelligence Integration: By integrating real-time threat intelligence feeds,

AI systems can dynamically evaluate policies against evolving threat landscapes. For example:
• Zero-Day Vulnerabilities: Quickly flag and adapt policies in response to newly discovered

cybersecurity vulnerabilities.
• Mission-Specific Adjustments: Tailor policy guidance to reflect the unique risks and require-

ments of specific missions or operations.
• Proactive Defense: Use predictive models to identify and address potential threats before they

materialize, ensuring continuous operational readiness.

These AI-enabled capabilities offer transformative potential for the Department of Defense, enabling
a policy ecosystem that is not only responsive to change but also anticipates and mitigates challenges.
By integrating AI into policy management, the Department can achieve greater agility, accountability,
and precision, ensuring its policy framework remains a robust pillar of operational success.

Code-as-Policy White Paper 26 v0.1 | January 25, 2025

8.3 Policy Enforcement via Machine-Readable Code

While this paper focuses on textual policy, advanced implementations can encode key policy clauses
into machine-readable rules. Policy engines like Open Policy Agent or custom Department of Defense
solutions can enforce these rules automatically:

1. Security Configurations: Real-time scanning ensures systems adhere to policy-defined baseline
configurations.

2. Data Handling Procedures: Automated pipelines reject data flows that violate classification
or privacy stipulations.

3. Procurement Requirements: Smart contracts or embedded policy logic can verify contractor
compliance before approving transactions.

These examples illustrate the leap from mere documentation management to proactive and automated
compliance.

8.4 Adaptive Threat Intelligence Integration

As global threat vectors rapidly evolve, particularly in cyberspace, the Department of Defense
must continuously adapt its policies to remain effective. By leveraging AI-driven threat intelligence
platforms in concert with version-controlled policy repositories, the Department of Defense can
integrate real-time insights from diverse data sources—cyber threat feeds, sensor networks, and
intelligence analysis—directly into policy management pipelines.

Dynamic Risk Management Automated frameworks could evaluate emerging threats against
current directives and propose swift policy updates where discrepancies or vulnerabilities arise. For
instance, if an AI system detects a new zero-day software exploit affecting critical systems, it could
flag relevant sections of DoDI guidance for revision, launch a pull request in the policy repository,
and alert the appropriate stakeholders to expedite review and approval.

Operational Advantages

1. Shorten Reaction Times: Rapidly patch operational guidelines or security protocols based on
new intelligence.

2. Improve Coordination: Align policy updates across multiple commands and agencies in
real-time, reducing fragmentation.

3. Facilitate Proactive Measures: Leverage historical intelligence and predictive analytics to
anticipate emerging threat vectors and preemptively adjust policy before incidents occur.

8.5 Imaginative Future Directions

The Code-as-Policy paradigm is not merely a technical shift but a foundational transformation
with the potential to unlock groundbreaking innovations in policy creation, management, and
enforcement. Several forward-looking possibilities merit exploration to push the boundaries of what
a policy ecosystem can achieve:

1. Neural Policy Advisors as Collaborative Think Tanks: Leveraging Large Language
Models (LLMs) trained on historical policy data, operational insights, and global best practices,

Code-as-Policy White Paper 27 v0.1 | January 25, 2025

neural policy advisors could serve as real-time collaborators. These AI systems would not only
suggest new policy language but also simulate potential impacts across various scenarios, detect
conflicting directives, and even recommend adaptations to align with evolving mission needs.
Imagine a policy drafter asking, "How does this proposal align with cybersecurity directives?"
and receiving an instant, AI-driven analysis complete with recommendations and supporting
data.

2. Self-Enforcing Policies with Blockchain-Driven Smart Contracts: Policies governing
procurement, supply chain integrity, or compliance with regulations could be codified into
blockchain-based smart contracts. These self-executing contracts would monitor transactions
in real time, ensuring that only those adhering to Department of Defense rules proceed. For
instance, a procurement policy could automatically block payments to vendors failing to meet
security standards or environmental criteria, ensuring continuous enforcement without manual
intervention.

3. Dynamic Cross-Domain Orchestration: Policies stored in version-controlled repositories
could act as triggers for interconnected workflows across domains such as logistics, finance, and
human resources. For example:
• An updated policy on resource prioritization could automatically adjust allocations in enterprise

planning systems, synchronizing budgets and personnel assignments across commands.
• A cybersecurity directive could dynamically reconfigure network access controls or deploy

patches across the enterprise in response to emerging threats.
• Mission-specific adjustments could cascade through systems, ensuring every operational node

is aligned with the latest strategic objectives.
4. Policy Simulation Environments for Real-World Testing: Advanced simulation environ-

ments could allow policymakers to test proposed directives in virtual "digital twins" of Department
of Defense operations. By simulating how changes affect mission readiness, compliance, and
interdepartmental workflows, leaders could identify gaps, conflicts, or unintended consequences
before implementing policies in the real world. Such simulations could also incorporate AI and
machine learning models to forecast long-term impacts and assess risk.

5. Autonomous Policy Adaptation: Building on AI’s potential, future systems could monitor
operational data and adjust policies autonomously within predefined thresholds. For example, if
intelligence data signals an increase in cyberattacks, an AI system could preemptively tighten
access controls, recommend temporary measures, or prioritize relevant directives for human
review—all while maintaining a full audit trail.

6. Decentralized Policy Marketplaces: A decentralized, blockchain-enabled policy marketplace
could allow Department of Defense departments to share, adapt, and exchange modular policy
components. Departments could "license" well-vetted policies, adapting them to local contexts
while contributing improvements back to the central repository. This would create a collaborative
ecosystem where the best ideas rise to the top through collective refinement.

These imaginative directions reflect the transformative potential of the CaP model when combined
with cutting-edge technologies like AI, blockchain, and advanced simulation. Pursuing these
innovations would position the Department of Defense at the forefront of digital governance,
ensuring agility, resilience, and strategic dominance in an era of rapid change.

Code-as-Policy White Paper 28 v0.1 | January 25, 2025

8.6 Prioritizing Future Research

While imaginative visions foster innovation, prioritization of the following research areas can yield
near-term impact:

1. Ethical and Legal Considerations of AI in Policy: Investigate how AI-generated policy
recommendations interface with existing legal frameworks and ethical guidelines, ensuring
transparency and accountability.

2. Sociotechnical Shifts: Study how hierarchical structures adapt when policy creation is democ-
ratized through pull requests, exploring the long-term cultural and organizational impacts.

3. Practical Policy Simulation Environments: Develop simulation environments to test new
policies in virtual exercises, leveraging AI/ML to predict real-world outcomes and identify
potential conflicts or gaps.

4. Automated Cross-Referencing and Classification: Explore advanced NLP techniques to
classify and interlink Department of Defense policies, directives, and regulations, providing a
holistic view of the entire Department of Defense policy landscape.

9 On the Naming of "Code-as-Policy"
The designation Code-as-Policy (CaP) was intentionally chosen to emphasize a human-centric
and organizationally transformative approach, distinguishing it from the existing Policy-as-Code
paradigm. While Policy-as-Code typically refers to machine-readable and enforceable rules within
automation systems, CaP focuses on managing policy through collaborative, version-controlled
processes akin to software development practices.
This nomenclature aligns with the broader Everything-as-Code (EaC) philosophy, which seeks to
unify various "as-code" methodologies-such as Infrastructure-as-Code, Configuration-as-Code, and
Docs-as-Code-into an interoperable ecosystem. By positioning policy management within this
framework, CaP underscores the shift from static, document-based policies to dynamic, adaptable
repositories that enhance transparency, accountability, and collaboration.
Furthermore, the term CaP avoids conflating this initiative with existing technical frameworks,
thereby fostering clear differentiation and reducing potential confusion among stakeholders. This
distinction highlights CaP’s unique focus on leveraging version control for policy development and
management, promoting a culture of continuous improvement and agility within the Department of
Defense.
In summary, Code-as-Policy encapsulates the initiative’s intent to revolutionize policy management
by integrating it into the software development lifecycle, thereby enhancing its responsiveness and
alignment with modern technological and organizational demands.

10 Conclusion
Migrating to a version-controlled, Code-as-Policy paradigm offers the Department of Defense a trans-
formative solution to the persistent challenges of policy versioning, accountability, and responsiveness.
By embracing the principles of Docs-as-Code, the DoD can convert static policy documents into
dynamic, living repositories that reflect ongoing learning, collaboration, and adaptation across the
department. This transition not only enhances transparency and accountability but also positions

Code-as-Policy White Paper 29 v0.1 | January 25, 2025

the DoD at the forefront of digital governance, ensuring operational excellence and strategic agility
in an era dominated by rapid technological advancements and evolving global threats.
Despite the technical, cultural, and governance challenges inherent in such a transformation, a
phased rollout, robust governance frameworks, comprehensive training, and strategic use of advanced
technologies like AI and blockchain provide a clear pathway to successful implementation. The
Code-as-Policy model is not merely a technical upgrade but a foundational shift towards a more
agile, accountable, and AI-ready Department of Defense.
Future research and continuous innovation will further refine and expand the capabilities of the
CaP model, ensuring its alignment with the DoD’s evolving needs and the broader landscape of
digital modernization. By committing to this paradigm shift, the Department of Defense can
achieve unprecedented levels of policy management efficiency, security, and adaptability, thereby
safeguarding its mission and maintaining strategic dominance in an increasingly complex world.

11 Glossary
AI-augmented Governance The integration of artificial intelligence technologies to enhance

decision-making, policy enforcement, and operational efficiencies within governance frameworks.

Agile Governance A framework that applies Agile methodologies to governance processes, pro-
moting flexibility, iterative development, and continuous improvement in policy management
and decision-making.

Artificial Intelligence (AI) A branch of computer science focused on creating systems capable
of performing tasks that typically require human intelligence, such as understanding natural
language, recognizing patterns, and making decisions.

Autonomous Systems Systems that operate independently without human intervention, utilizing
sensors, machine learning, and decision-making algorithms to perform tasks. In the DoD
context, this includes drones, robotics, and unmanned vehicles.

Branching and Merging Version control operations that allow for the creation of separate lines
of development (branches) and the integration of changes from different branches (merging)
into a unified codebase.

CI/CD (Continuous Integration/Continuous Deployment) A set of practices in software
development where code changes are automatically tested and deployed, ensuring rapid and
reliable delivery of software updates.

Code-as-Policy (CaP) A paradigm where organizational policies are managed as version-controlled
code, enabling dynamic updates, collaboration, and integration with development workflows.

Configuration-as-Code (CaC) The management of system configurations through machine-
readable files, allowing for version control, automation, and reproducibility.

Continuous Integration (CI) A software development practice where developers frequently
merge their code changes into a central repository, followed by automated builds and tests to
detect issues early.

Code-as-Policy White Paper 30 v0.1 | January 25, 2025

Continuous Deployment (CD) An extension of Continuous Integration where code changes are
automatically deployed to production environments after passing automated tests, ensuring
rapid and reliable release cycles.

Cyber-Physical Operations Activities that integrate computational (cyber) systems with physi-
cal processes, enabling coordinated control and interaction between software-driven technologies
and the physical environment. In the Department of Defense context, this includes the use of
autonomous systems, drones, robotics, and sensor networks to achieve strategic and tactical
objectives securely and efficiently.

DevOps A set of practices that combines software development (Dev) and IT operations (Ops),
aiming to shorten the development lifecycle and provide continuous delivery with high software
quality.

DevSecOps An extension of DevOps that integrates security practices into the software develop-
ment and operations lifecycle, ensuring security is a shared responsibility.

Docs-as-Code The practice of managing documentation using version control systems and software
development tools, facilitating collaboration, versioning, and automation.

Digital Transformation The integration of digital technology into all areas of a business, fun-
damentally changing how organizations operate and deliver value to customers. In the DoD,
this involves modernizing infrastructure, processes, and policies to enhance efficiency and
effectiveness.

Infrastructure-as-Code (IaC) The management of infrastructure (networks, servers, storage)
through code and automation, enabling consistent and scalable deployments.

JADC2 (Joint All-Domain Command and Control) A Department of Defense initiative aimed
at integrating and synchronizing data across all military domains to enhance operational
effectiveness.

Knowledge Graphs Structured representations of knowledge that capture entities, their attributes,
and the relationships between them. Knowledge graphs enable enhanced data integration,
search capabilities, and semantic understanding.

Machine Learning (ML) A subset of AI focused on developing algorithms that allow computers
to learn from and make predictions or decisions based on data without being explicitly
programmed for specific tasks.

Open Policy Agent An open-source, general-purpose policy engine that enables unified, context-
aware policy enforcement across the entire stack. It allows organizations to define policies in a
high-level declarative language.

Pull Requests A feature in version control systems where contributors propose changes to a
codebase, which are then reviewed and approved by maintainers before integration.

Quantum Computing A type of computing that takes advantage of quantum phenomena, such
as superposition and entanglement, to perform operations on data. Quantum computing has
the potential to solve complex problems much faster than classical computers.

Code-as-Policy White Paper 31 v0.1 | January 25, 2025

Smart Contracts Self-executing contracts with the terms of the agreement directly written into
code. Smart contracts automatically enforce and execute contractual clauses when predefined
conditions are met, often utilizing blockchain technology.

Version Control Systems (VCS) Tools that track changes to files over time, allowing multiple
collaborators to work on a project simultaneously while maintaining a history of modifications.
Examples include Git, Perforce, and Subversion.

YAML (YAML Ain’t Markup Language) A human-readable data serialization standard com-
monly used for configuration files and data exchange between languages with different data
structures.

Zero Trust Architectures A security model that assumes no implicit trust granted to assets
or user accounts based solely on their physical or network location, requiring continuous
verification.

Code-as-Policy White Paper 32 v0.1 | January 25, 2025

12 Appendix: Supporting Scripts
This section provides implementation details for the AI-based validation described in the pipeline.
Below is the Python script used to analyze the generated PDF for correctness, coherence, and
adherence to standards using the OpenAI API.

1 import argparse
2 import openai
3 from PyPDF2 import PdfReader
4 import sys
5

6 # OpenAI API key
7 openai.api_key = "YOUR_OPENAI_API_KEY"
8

9 def extract_text_from_pdf(pdf_path):
10 """Extracts text from a PDF file."""
11 reader = PdfReader(pdf_path)
12 text = ""
13 for page in reader.pages:
14 text += page.extract_text()
15 return text
16

17 def analyze_with_openai(text):
18 """Analyzes for coherence, correctness, and adherence to standards."""
19 prompt = f"""
20 You are a document analysis expert. Analyze the following text for:
21 1. Correctness, are there any factual errors or unclear statements?
22 2. Coherence, is the document well-organized and easy to follow?
23 3. Adherence to professional standards, does it align with writing norms?
24 Provide a pass/fail verdict with a very concise explanation.
25

26 Document Text:
27 {text[:3000]} # Limiting to 3000 characters.
28 """
29

30 response = openai.ChatCompletion.create(
31 model="gpt-4",
32 messages=[{"role": "user", "content": prompt}]
33)
34 return response["choices"][0]["message"]["content"]
35

36 def main(pdf_path):
37 print(f"Analyzing PDF: {pdf_path}")
38 text = extract_text_from_pdf(pdf_path)
39 if not text:
40 print("Failed to extract text from the PDF. Exiting.")
41 sys.exit(1)
42

43 analysis = analyze_with_openai(text)
44 print("AI Analysis Result:")

Code-as-Policy White Paper 33 v0.1 | January 25, 2025

45 print(analysis)
46

47 # Determine pass/fail from analysis
48 if "pass" in analysis.lower():
49 print("AI verdict: PASS")
50 sys.exit(0) # Exit with success
51 else:
52 print("AI verdict: FAIL")
53 sys.exit(1) # Exit with failure
54

55 if __name__ == "__main__":
56 parser = argparse.ArgumentParser(description="Analyze.")
57 parser.add_argument("--pdf", required=True, help="Path.")
58 args = parser.parse_args()
59 main(args.pdf)
60

12.1 Detailed Azure DevOps Pipeline Configurations

For readers interested in the granular technical details of the Azure DevOps pipeline configurations,
the following YAML snippets provide comprehensive guidance. These configurations are integral to
automating the build, validation, and deployment processes as outlined in Section 6.

12.1.1 azure-pipelines.yml

1 # Azure DevOps Pipeline for building a PDF from LaTeX
2 trigger:
3 branches:
4 include:
5 - main
6

7 pool:
8 vmImage: 'ubuntu-latest'
9

10 variables:
11 TEX_FILE: "CodeAsPolicyFromPDFstoPullRequests.tex"
12 OUTPUT_DIR: "output"
13

14 steps:
15 - task: Cache@2
16 displayName: "Cache LaTeX Installation"
17 inputs:
18 key: "latex-ubuntu-$(Agent.OS)-$(Agent.OSArchitecture)"
19 path: "/usr/share/texlive"
20 restoreKeys: |
21 latex-ubuntu
22

23 # Debugging step to verify file locations
24 - script: |

Code-as-Policy White Paper 34 v0.1 | January 25, 2025

25 echo "Workspace contents:"
26 ls -R $(System.DefaultWorkingDirectory)
27 displayName: "Debug: List Workspace Contents"
28

29 # Install LaTeX
30 - task: Bash@3
31 displayName: "Install Minimal LaTeX"
32 condition: ne(variables['CacheRestored'], 'true') # Only install if cache not

restored
33 inputs:
34 targetType: 'inline'
35 script: |
36 sudo apt-get update
37 sudo apt-get install -y texlive-latex-recommended texlive-latex-extra texlive-

fonts-recommended latexmk
38

39 # Compile LaTeX to PDF
40 - task: Bash@3
41 displayName: "Compile LaTeX Document"
42 inputs:
43 targetType: 'inline'
44 script: |
45 mkdir -p $(System.DefaultWorkingDirectory)/$(OUTPUT_DIR)
46 latexmk -pdf -output-directory=$(System.DefaultWorkingDirectory)/$(OUTPUT_DIR) $

(System.DefaultWorkingDirectory)/$(TEX_FILE)
47

48 # Publish PDF artifact
49 - task: PublishPipelineArtifact@1
50 displayName: "Publish PDF Artifact"
51 inputs:
52 targetPath: "$(System.DefaultWorkingDirectory)/$(OUTPUT_DIR)"
53 artifact: "PDF"
54

12.1.2 azure-pipelines-1.yml

1 # Azure DevOps Pipeline for consuming the built PDF
2 trigger: none
3

4 resources:
5 pipelines:
6 - pipeline: InternalBuild # Alias for the first pipeline
7 source: "Whitepaper.CodeAsPolicy Internal Build" # Exact name of the first

pipeline in Azure DevOps
8 trigger:
9 branches:

10 include:

Code-as-Policy White Paper 35 v0.1 | January 25, 2025

11 - main # Triggers this pipeline when the 'main' branch of the first
pipeline is updated

12

13 pool:
14 vmImage: 'ubuntu-latest'
15

16 variables:
17 DEPLOY_STORAGE_ACCOUNT: "wpcodeaspolicy" # Azure Storage Account Name
18 DEPLOY_CONTAINER: "whitepapers" # Blob Container Name
19 DEPLOY_CONNECTION_STRING: "$(AZURE_STORAGE_CONNECTION_STRING)" # Azure Storage

Connection String (set as a secret variable)
20

21 stages:
22 # Stage 1: Validation
23 - stage: Validation
24 displayName: "Validate PDF"
25 jobs:
26 - job: AutomatedChecks
27 displayName: "Run Automated Checks"
28 steps:
29 # Download the PDF Artifact from the first pipeline
30 - task: DownloadPipelineArtifact@2
31 displayName: "Download PDF Artifact"
32 inputs:
33 buildType: 'specific' # Correct parameter
34 project: '$(System.TeamProject)' # Assumes same project
35 pipeline: ${{ resources.pipelines.InternalBuild.pipelineId }} #

Reference the pipeline ID
36 runVersion: 'latest' # Fetch the latest run
37 artifact: 'PDF' # Name of the artifact
38 path: '$(Pipeline.Workspace)/downloaded_pdf' # Destination path
39

40 # Debugging step to verify downloaded artifact
41 - script: |
42 echo "Listing contents of the downloaded_pdf directory:"
43 ls -R $(Pipeline.Workspace)/downloaded_pdf
44 displayName: "Debug: Verify Downloaded Artifacts"
45

46 # Validation Steps
47 - script: |
48 echo "Contents of the LaTeX file:"
49 cat $(Pipeline.Workspace)/downloaded_pdf/

CodeAsPolicyFromPDFstoPullRequests.tex
50 displayName: "Debug: Print LaTeX File"
51

52 - script: |
53 if grep -q '\\tableofcontents' $(Pipeline.Workspace)/downloaded_pdf/

CodeAsPolicyFromPDFstoPullRequests.tex; then
54 echo "Table of Contents found."
55 else

Code-as-Policy White Paper 36 v0.1 | January 25, 2025

56 echo "Error: Table of Contents not found."
57 exit 1
58 fi
59 displayName: "Check for Table of Contents"
60

61 - script: |
62 if grep -q '\\section*\s*{Abstract}' $(Pipeline.Workspace)/

downloaded_pdf/CodeAsPolicyFromPDFstoPullRequests.tex; then
63 echo "Abstract section found."
64 else
65 echo "Error: Abstract section not found."
66 exit 1
67 fi
68 displayName: "Check for Abstract Section"
69

70 - script: |
71 if grep -q '\\title{' $(Pipeline.Workspace)/downloaded_pdf/

CodeAsPolicyFromPDFstoPullRequests.tex; then
72 echo "Title section found."
73 else
74 echo "Error: Title section not found."
75 exit 1
76 fi
77 displayName: "Check for Title Section"
78

79 - script: |
80 if grep -q '\\bibliography{' $(Pipeline.Workspace)/downloaded_pdf/

CodeAsPolicyFromPDFstoPullRequests.tex; then
81 echo "References/Bibliography section found."
82 else
83 echo "Error: References/Bibliography section not found."
84 exit 1
85 fi
86 displayName: "Check for References/Bibliography Section"
87

88 - script: |
89 if grep -q '\\section{Conclusion}' $(Pipeline.Workspace)/downloaded_pdf/

CodeAsPolicyFromPDFstoPullRequests.tex; then
90 echo "Conclusion section found."
91 else
92 echo "Error: Conclusion section not found."
93 exit 1
94 fi
95 displayName: "Check for Conclusion Section"
96

97 % AI-Based Validation (Details in Appendix)
98 - task: Bash@3
99 displayName: "AI-Based PDF Analysis with OpenAI"

100 inputs:
101 targetType: 'inline'

Code-as-Policy White Paper 37 v0.1 | January 25, 2025

102 script: |
103 python analyze_ai.py --pdf $(Pipeline.Workspace)/downloaded_pdf/

CodeAsPolicyFromPDFstoPullRequests.pdf
104 continueOnError: false # Fail if non-zero code
105

106 % Manual Approval Deployment Job
107 - deployment: ManualApproval
108 displayName: "Manual Approval Deployment"
109 environment: 'Production' % Ensure this environment is set up in Azure DevOps
110 dependsOn: AutomatedChecks
111 strategy:
112 runOnce:
113 deploy:
114 steps:
115 - script: echo "Awaiting manual approval..."
116 displayName: "Manual Approval Placeholder"
117

118 % Stage 2: Deploy
119 - stage: Deploy
120 displayName: "Deploy PDF"
121 dependsOn: Validation
122 jobs:
123 - job: DeployJob
124 displayName: "Deploy PDF to Azure Blob Storage"
125 steps:
126 # Download the PDF Artifact from the first pipeline
127 - task: DownloadPipelineArtifact@2
128 displayName: "Download PDF Artifact"
129 inputs:
130 buildType: 'specific' # Correct parameter
131 project: '$(System.TeamProject)' # Assumes same project
132 pipeline: ${{ resources.pipelines.InternalBuild.pipelineId }} #

Reference the pipeline ID
133 runVersion: 'latest' # Fetch the latest run
134 artifact: 'PDF' # Name of the artifact
135 path: '$(Pipeline.Workspace)/downloaded_pdf' # Destination path
136

137 # Debugging step to verify downloaded artifact
138 - script: |
139 echo "Listing contents of the downloaded_pdf directory:"
140 ls -R $(Pipeline.Workspace)/downloaded_pdf
141 displayName: "Debug: Verify Downloaded Artifacts"
142

143 # Deploy to Azure Blob Storage
144 - task: AzureCLI@2
145 displayName: "Upload PDF to Azure Blob Storage"
146 inputs:
147 azureSubscription: "AzureBlobConnection" # Ensure this service

connection is configured
148 scriptType: 'bash'

Code-as-Policy White Paper 38 v0.1 | January 25, 2025

149 scriptLocation: 'inlineScript'
150 inlineScript: |
151 az storage blob upload \
152 --account-name $(DEPLOY_STORAGE_ACCOUNT) \
153 --container-name $(DEPLOY_CONTAINER) \
154 --name CodeAsPolicyFromPDFstoPullRequests.pdf \
155 --file $(Pipeline.Workspace)/downloaded_pdf/

CodeAsPolicyFromPDFstoPullRequests.pdf \
156 --connection-string "$(DEPLOY_CONNECTION_STRING)"
157

Code-as-Policy White Paper 39 v0.1 | January 25, 2025

References

References
[1] Adam Boas. (2024). LinkedIn Profile. Retrieved from https://www.linkedin.com/in/adam

nboas/

[2] Wright, S., & Martin, K. (2018). Docs-as-Code: How Version Control Transforms Documenta-
tion Management. Journal of Technical Writing, 34 (2), 177–194.

[3] Loeliger, J., & McCullough, M. (2012). Version Control with Git. O’Reilly Media.

[4] Spinellis, D. (2020). Docs in Repos: Lessons from Open Source. Communications of the ACM,
63 (4), 21–23.

[5] Kitchin, R. (2014). The Data Revolution: Big Data, Open Data, Data Infrastructures and Their
Consequences. SAGE Publications.

[6] Lamport, L. (2018). Documenting Complex Systems: Why We Adopted Docs-as-Code. IEEE
Software, 35 (3), 14–18.

[7] Morrison, J. (2017). The Open Organization. Management Science Quarterly, 16 (1), 102–117.

[8] Conboy, K., & Fitzgerald, B. (2010). Method and developer characteristics for effective agile
method tailoring: A study of expert opinion. ACM Transactions on Software Engineering and
Methodology, 20 (1), 4–18.

[9] Hashimoto, M. (2017). Infrastructure as Code: Managing Servers in the Cloud. O’Reilly Media.

[10] Department of Defense. (2023). DoD Directive 5100.01: Roles and Responsibilities. Washington,
DC.

[11] Appleton, B., Berczuk, S., & Brown, A. (2020). Continuous Integration: Improving Software
Quality and Reducing Risk. Addison-Wesley Professional.

[12] Fowler, M., & Highsmith, J. (2001). The Agile Manifesto. Software Development Magazine,
9 (8), 28–35.

[13] Kim, G., Humble, J., Debois, P., & Willis, J. (2016). The DevOps Handbook. IT Revolution
Press.

[14] Carucci, R. (2019). Leading Through Change. Harvard Business Review Press.

[15] Department of Defense. (2019). Digital Modernization Strategy. Washington, DC.

[16] Kotter, J. P. (1996). Leading Change. Harvard Business Review Press.

[17] National Institute of Standards and Technology. (2020). NIST SP 800-53 Rev. 5: Security and
Privacy Controls for Information Systems and Organizations. Gaithersburg, MD.

[18] Department of Defense. (2021). DoD Instruction 5015.02: Records Management Program.
Washington, DC.

Code-as-Policy White Paper 40 v0.1 | January 25, 2025

https://www.linkedin.com/in/adamnboas/
https://www.linkedin.com/in/adamnboas/

[19] Atlassian Corporation. (2022). Managing Documentation with CI/CD: Integrations and Best
Practices. Retrieved from https://www.atlassian.com

[20] Halpern, J. Y., & Weissman, V. (2008). Using first-order logic to reason about policies. ACM
Transactions on Information and System Security, 11 (4), 21–42.

Code-as-Policy White Paper 41 v0.1 | January 25, 2025

https://www.atlassian.com

	Introduction
	Policy Management in the Digital Era
	Scope and Purpose of This Paper
	Research Objectives and Questions

	Theoretical and Historical Foundations
	Evolution of Version Control and Collaborative Document Systems
	The Emergence of Docs-as-Code in Organizational Settings
	Code-as-Policy vs. Policy Documentation

	The Case for a Version-Controlled Code-as-Policy Model
	Enhanced Transparency and Accountability
	Faster Iteration and Continuous Improvement
	Automation, Integration, and AI Readiness
	Cultural and Organizational Benefits
	Long-Term Strategic Alignments

	Potential Challenges and Mitigation Strategies
	Cultural Resistance and Change Management
	Security and Classification
	Governance, Compliance, and Legal Considerations
	Scalability Across a Large Organization
	Technical Infrastructure and Interoperability
	User-Centric Design and Accessibility for Non-Technical Stakeholders
	AI Risks and Mitigations
	Long-Term Strategic Alignments

	Modernization Initiatives and the Code-as-Policy Framework
	Implementation Framework
	Phased Rollout
	Governance Model
	Training and Change Management
	Supporting Tools and Automations

	From Theory to Practice: Azure DevOps for Code-as-Policy
	Repository Management
	.gitignore Configuration
	README.md: Onboarding and Documentation
	Automated Build Pipeline
	Deployment Pipeline

	Broader Impact, Real-World Examples, and Future Research
	Digital Bureaucracy and Agile Governance
	AI-Augmented Policy and Decision Support
	Policy Enforcement via Machine-Readable Code
	Adaptive Threat Intelligence Integration
	Imaginative Future Directions
	Prioritizing Future Research

	On the Naming of "Code-as-Policy"
	Conclusion
	Glossary
	Appendix: Supporting Scripts
	Detailed Azure DevOps Pipeline Configurations

